These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 25380306)

  • 41. Lithium-sulfur batteries based on nitrogen-doped carbon and an ionic-liquid electrolyte.
    Sun XG; Wang X; Mayes RT; Dai S
    ChemSusChem; 2012 Oct; 5(10):2079-85. PubMed ID: 22847977
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries.
    Zeng X; Li J
    J Hazard Mater; 2014 Apr; 271():50-6. PubMed ID: 24607415
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ionic liquid-assisted preparation of laccase-based biocathodes with improved biocompatibility.
    Qian Q; Su L; Yu P; Cheng H; Lin Y; Jin X; Mao L
    J Phys Chem B; 2012 May; 116(17):5185-91. PubMed ID: 22497437
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Magnesium-antimony liquid metal battery for stationary energy storage.
    Bradwell DJ; Kim H; Sirk AH; Sadoway DR
    J Am Chem Soc; 2012 Feb; 134(4):1895-7. PubMed ID: 22224420
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biocompatible composite actuator: a supramolecular structure consisting of the biopolymer chitosan, carbon nanotubes, and an ionic liquid.
    Lu L; Chen W
    Adv Mater; 2010 Sep; 22(33):3745-8. PubMed ID: 20512819
    [No Abstract]   [Full Text] [Related]  

  • 46. Rigid-flexible coupling high ionic conductivity polymer electrolyte for an enhanced performance of LiMn2O4/graphite battery at elevated temperature.
    Hu P; Duan Y; Hu D; Qin B; Zhang J; Wang Q; Liu Z; Cui G; Chen L
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4720-7. PubMed ID: 25654192
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biodegradable batteries with immobilized electrolyte for transient MEMS.
    She D; Tsang M; Allen M
    Biomed Microdevices; 2019 Feb; 21(1):17. PubMed ID: 30747407
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Ceramic-Electrolyte Glucose Fuel Cell for Implantable Electronics.
    Simons P; Schenk SA; Gysel MA; Olbrich LF; Rupp JLM
    Adv Mater; 2022 Jun; 34(24):e2109075. PubMed ID: 35384081
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ionic-liquid-assisted synthesis of nanostructured and carbon-coated Li3V2(PO4)3 for high-power electrochemical storage devices.
    Zhang X; Böckenfeld N; Berkemeier F; Balducci A
    ChemSusChem; 2014 Jun; 7(6):1710-8. PubMed ID: 24683038
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quasi-solid electrolyte: a thixotropic gel of imogolite and an ionic liquid.
    Shikinaka K; Taki N; Kaneda K; Tominaga Y
    Chem Commun (Camb); 2017 Jan; 53(3):613-616. PubMed ID: 27981332
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nonaqueous magnesium electrochemistry and its application in secondary batteries.
    Aurbach D; Weissman I; Gofer Y; Levi E
    Chem Rec; 2003; 3(1):61-73. PubMed ID: 12552532
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhancing the stability of porphyrin dye-sensitized solar cells by manipulation of electrolyte additives.
    Lau GP; Tsao HN; Yi C; Zakeeruddin SM; Grätzel M; Dyson PJ
    ChemSusChem; 2015 Jan; 8(2):255-9. PubMed ID: 25488713
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Implantable cardiac rhythm device batteries.
    Root MJ
    J Cardiovasc Transl Res; 2008 Dec; 1(4):254-7. PubMed ID: 20559932
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biocompatible ionic liquids: a new approach for stabilizing proteins in liquid formulation.
    Vrikkis RM; Fraser KJ; Fujita K; Macfarlane DR; Elliott GD
    J Biomech Eng; 2009 Jul; 131(7):074514. PubMed ID: 19640150
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-energy supercapacitors based on hierarchical porous carbon with an ultrahigh ion-accessible surface area in ionic liquid electrolytes.
    Zhong H; Xu F; Li Z; Fu R; Wu D
    Nanoscale; 2013 Jun; 5(11):4678-82. PubMed ID: 23632802
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Aqueous electrochemistry of poly(vinylanthraquinone) for anode-active materials in high-density and rechargeable polymer/air batteries.
    Choi W; Harada D; Oyaizu K; Nishide H
    J Am Chem Soc; 2011 Dec; 133(49):19839-43. PubMed ID: 22011047
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Paving the way for using Li₂S batteries.
    Xu R; Zhang X; Yu C; Ren Y; Li JC; Belharouak I
    ChemSusChem; 2014 Sep; 7(9):2457-60. PubMed ID: 25044568
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A comprehensive review of powering methods used in state-of-the-art miniaturized implantable electronic devices.
    Dinis H; Mendes PM
    Biosens Bioelectron; 2021 Jan; 172():112781. PubMed ID: 33160236
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A flexible super-capacitive solid-state power supply for miniature implantable medical devices.
    Meng C; Gall OZ; Irazoqui PP
    Biomed Microdevices; 2013 Dec; 15(6):973-83. PubMed ID: 23832644
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Preparation and characterization of (PVP + NaClO4) electrolytes for battery applications.
    Subba Reddy ChV; Jin AP; Zhu QY; Mai LQ; Chen W
    Eur Phys J E Soft Matter; 2006 Apr; 19(4):471-6. PubMed ID: 16604278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.