These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 25380632)

  • 1. Membrane-integrated physico-chemical treatment of coke-oven wastewater: transport modelling and economic evaluation.
    Kumar R; Chakrabortty S; Pal P
    Environ Sci Pollut Res Int; 2015 Apr; 22(8):6010-23. PubMed ID: 25380632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane-integrated hybrid system for the effective treatment of ammoniacal wastewater of coke-making plant: a volume reduction approach.
    Kumar R; Pal P
    Environ Technol; 2014 Aug; 35(13-16):2018-27. PubMed ID: 24956796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A membrane-integrated advanced scheme for treatment of industrial wastewater: dynamic modeling towards scale up.
    Kumar R; Pal P
    Chemosphere; 2013 Aug; 92(10):1375-82. PubMed ID: 23735488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of phenol from coke-oven wastewater by cross-flow nanofiltration membranes.
    Kumar R; Pal P
    Water Environ Res; 2013 May; 85(5):447-55. PubMed ID: 23789574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyanide removal from industrial wastewater by cross-flow nanofiltration: transport modeling and economic evaluation.
    Pal P; Bhakta P; Kumar R
    Water Environ Res; 2014 Aug; 86(8):698-706. PubMed ID: 25306785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anodic oxidation of coke oven wastewater: Multiparameter optimization for simultaneous removal of cyanide, COD and phenol.
    Sasidharan Pillai IM; Gupta AK
    J Environ Manage; 2016 Jul; 176():45-53. PubMed ID: 27039363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative characterization of cyanide-containing steel industrial wastewater.
    Mondal A; Sarkar S; Nair UG
    Water Sci Technol; 2021 Jan; 83(2):322-330. PubMed ID: 33504697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of cyanide, aniline and phenol in pre-treated coke oven wastewater by peroxide assisted electro-oxidation process.
    Singh H; Mishra BK
    Water Sci Technol; 2018 Dec; 78(10):2214-2227. PubMed ID: 30629549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphates (V) recovery from phosphorus mineral fertilizers industry wastewater by continuous struvite reaction crystallization process.
    Hutnik N; Kozik A; Mazienczuk A; Piotrowski K; Wierzbowska B; Matynia A
    Water Res; 2013 Jul; 47(11):3635-43. PubMed ID: 23726699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An economic evaluation of phosphorus recovery as struvite from digester supernatant.
    Shu L; Schneider P; Jegatheesan V; Johnson J
    Bioresour Technol; 2006 Nov; 97(17):2211-6. PubMed ID: 16364632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phycoremediation of pollutants from secondary treated coke-oven wastewater using poultry litter as nutrient source: a cost-effective polishing technique.
    Rai A; Sen A; Sarkar B; Chakrabarty J; Mondal BK; Dutta S
    Water Sci Technol; 2021 Nov; 84(9):2406-2421. PubMed ID: 34810320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Struvite formation, control and recovery.
    Doyle JD; Parsons SA
    Water Res; 2002 Sep; 36(16):3925-40. PubMed ID: 12405401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Research on desulfurization using coke-oven wastewater with pulsed corona discharge].
    Shao GW; Li J; Wang WL; Li SL
    Huan Jing Ke Xue; 2004 Mar; 25(2):77-80. PubMed ID: 15202239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance evaluation of a full-scale coke oven wastewater treatment plant in an integrated steel plant.
    Kumar MS; Vaidya AN; Shivaraman N; Bal AS
    Indian J Environ Health; 2003 Jan; 45(1):29-38. PubMed ID: 14723281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new algorithm for design, operation and cost assessment of struvite (MgNH4PO4) precipitation processes.
    Birnhack L; Nir O; Telzhenski M; Lahav O
    Environ Technol; 2015; 36(13-16):1892-901. PubMed ID: 25704607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limitations of the removal of cyanide from coking wastewater by ozonation and by the hydrogen peroxide-ozone process.
    Pueyo N; Miguel N; Ovelleiro JL; Ormad MP
    Water Sci Technol; 2016; 74(2):482-90. PubMed ID: 27438254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential phosphorus recovery by struvite formation.
    Jaffer Y; Clark TA; Pearce P; Parsons SA
    Water Res; 2002 Apr; 36(7):1834-42. PubMed ID: 12044083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous biodegradation of phenol and cyanide present in coke-oven effluent using immobilized Pseudomonas putida and Pseudomonas stutzeri.
    Singh U; Arora NK; Sachan P
    Braz J Microbiol; 2018; 49(1):38-44. PubMed ID: 28958662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ammonia nitrogen removal from acetylene purification wastewater from a PVC plant by struvite precipitation.
    Zhu L; Dong D; Hua X; Guo Z; Liang D
    Water Sci Technol; 2016; 74(2):508-15. PubMed ID: 27438257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ammonia nitrogen removal from coking wastewater and high quality gypsum recovery by struvite recycling by using calcium hydroxide as decomposer.
    Huang H; Li B; Dai J; Wang W; Zhang M; Ou Y
    J Environ Manage; 2021 Aug; 292():112712. PubMed ID: 33991826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.