BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 25380696)

  • 1. The glutamine-glutamate/GABA cycle: function, regional differences in glutamate and GABA production and effects of interference with GABA metabolism.
    Walls AB; Waagepetersen HS; Bak LK; Schousboe A; Sonnewald U
    Neurochem Res; 2015 Feb; 40(2):402-9. PubMed ID: 25380696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct demonstration by [13C]NMR spectroscopy that glutamine from astrocytes is a precursor for GABA synthesis in neurons.
    Sonnewald U; Westergaard N; Schousboe A; Svendsen JS; Unsgård G; Petersen SB
    Neurochem Int; 1993 Jan; 22(1):19-29. PubMed ID: 8095170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in neurotransmitter synthesis and intermediary metabolism between glutamatergic and GABAergic neurons during 4 hours of middle cerebral artery occlusion in the rat: the role of astrocytes in neuronal survival.
    Håberg A; Qu H; Saether O; Unsgård G; Haraldseth O; Sonnewald U
    J Cereb Blood Flow Metab; 2001 Dec; 21(12):1451-63. PubMed ID: 11740207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of γ-Aminobutyric acid transporter 1 inhibition by tiagabine on brain glutamate and γ-Aminobutyric acid metabolism in the anesthetized rat In vivo.
    Patel AB; de Graaf RA; Rothman DL; Behar KL
    J Neurosci Res; 2015 Jul; 93(7):1101-8. PubMed ID: 25663257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose, Lactate, β-Hydroxybutyrate, Acetate, GABA, and Succinate as Substrates for Synthesis of Glutamate and GABA in the Glutamine-Glutamate/GABA Cycle.
    Hertz L; Rothman DL
    Adv Neurobiol; 2016; 13():9-42. PubMed ID: 27885625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer.
    Bak LK; Schousboe A; Waagepetersen HS
    J Neurochem; 2006 Aug; 98(3):641-53. PubMed ID: 16787421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of glial metabolism in diabetic encephalopathy as detected by high resolution 13C NMR.
    García-Espinosa MA; García-Martín ML; Cerdán S
    NMR Biomed; 2003; 16(6-7):440-9. PubMed ID: 14679506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of glutamine and of TCA cycle constituents as precursors for transmitter glutamate and GABA.
    Peng L; Hertz L; Huang R; Sonnewald U; Petersen SB; Westergaard N; Larsson O; Schousboe A
    Dev Neurosci; 1993; 15(3-5):367-77. PubMed ID: 7805591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered cerebral glucose and acetate metabolism in succinic semialdehyde dehydrogenase-deficient mice: evidence for glial dysfunction and reduced glutamate/glutamine cycling.
    Chowdhury GM; Gupta M; Gibson KM; Patel AB; Behar KL
    J Neurochem; 2007 Dec; 103(5):2077-91. PubMed ID: 17854388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo.
    Patel AB; de Graaf RA; Mason GF; Rothman DL; Shulman RG; Behar KL
    Proc Natl Acad Sci U S A; 2005 Apr; 102(15):5588-93. PubMed ID: 15809416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of glial metabolism studied by 13C-NMR.
    Zwingmann C; Leibfritz D
    NMR Biomed; 2003; 16(6-7):370-99. PubMed ID: 14679501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of glutamine and GABA on [U-(13)C]glutamate metabolism in cerebellar astrocytes and granule neurons.
    Qu H; Konradsen JR; van Hengel M; Wolt S; Sonnewald U
    J Neurosci Res; 2001 Dec; 66(5):885-90. PubMed ID: 11746415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of glutamine in neurotransmission.
    Albrecht J; Sidoryk-Węgrzynowicz M; Zielińska M; Aschner M
    Neuron Glia Biol; 2010 Nov; 6(4):263-76. PubMed ID: 22018046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR spectroscopic study on the metabolic fate of [3-(13)C]alanine in astrocytes, neurons, and cocultures: implications for glia-neuron interactions in neurotransmitter metabolism.
    Zwingmann C; Richter-Landsberg C; Brand A; Leibfritz D
    Glia; 2000 Dec; 32(3):286-303. PubMed ID: 11102969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic trafficking between neurons and astrocytes: the glutamate/glutamine cycle revisited.
    Westergaard N; Sonnewald U; Schousboe A
    Dev Neurosci; 1995; 17(4):203-11. PubMed ID: 8575339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationships between glutamine, glutamate, and GABA in nerve endings under Pb-toxicity conditions.
    Struzyńska L; Sulkowski G
    J Inorg Biochem; 2004 Jun; 98(6):951-8. PubMed ID: 15149801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo nuclear magnetic resonance studies of glutamate-gamma-aminobutyric acid-glutamine cycling in rodent and human cortex: the central role of glutamine.
    Behar KL; Rothman DL
    J Nutr; 2001 Sep; 131(9 Suppl):2498S-504S; discussion 2523S-4S. PubMed ID: 11533301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional metabolic interactions of human neuron-astrocyte 3D in vitro networks.
    Simão D; Terrasso AP; Teixeira AP; Brito C; Sonnewald U; Alves PM
    Sci Rep; 2016 Sep; 6():33285. PubMed ID: 27619889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uptake of glutamate, GABA, and glutamine into a predominantly GABA-ergic and a predominantly glutamatergic nerve cell population in culture.
    Yu AC; Hertz L
    J Neurosci Res; 1982; 7(1):23-35. PubMed ID: 6121917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Knockout of GAD65 has major impact on synaptic GABA synthesized from astrocyte-derived glutamine.
    Walls AB; Eyjolfsson EM; Smeland OB; Nilsen LH; Schousboe I; Schousboe A; Sonnewald U; Waagepetersen HS
    J Cereb Blood Flow Metab; 2011 Feb; 31(2):494-503. PubMed ID: 20664610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.