These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 25380729)

  • 81. The role of human TFIIB in transcription start site selection in vitro and in vivo.
    Hawkes NA; Roberts SG
    J Biol Chem; 1999 May; 274(20):14337-43. PubMed ID: 10318856
    [TBL] [Abstract][Full Text] [Related]  

  • 82. The fidelity of transcription: RPB1 (RPO21) mutations that increase transcriptional slippage in S. cerevisiae.
    Strathern J; Malagon F; Irvin J; Gotte D; Shafer B; Kireeva M; Lubkowska L; Jin DJ; Kashlev M
    J Biol Chem; 2013 Jan; 288(4):2689-99. PubMed ID: 23223234
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Molecular basis of Rrn3-regulated RNA polymerase I initiation and cell growth.
    Blattner C; Jennebach S; Herzog F; Mayer A; Cheung AC; Witte G; Lorenzen K; Hopfner KP; Heck AJ; Aebersold R; Cramer P
    Genes Dev; 2011 Oct; 25(19):2093-105. PubMed ID: 21940764
    [TBL] [Abstract][Full Text] [Related]  

  • 84. The yeast RNA polymerase II-associated factor Iwr1p is involved in the basal and regulated transcription of specific genes.
    Peiró-Chova L; Estruch F
    J Biol Chem; 2009 Oct; 284(42):28958-67. PubMed ID: 19679657
    [TBL] [Abstract][Full Text] [Related]  

  • 85. A genetic assay for transcription errors reveals multilayer control of RNA polymerase II fidelity.
    Irvin JD; Kireeva ML; Gotte DR; Shafer BK; Huang I; Kashlev M; Strathern JN
    PLoS Genet; 2014 Sep; 10(9):e1004532. PubMed ID: 25232834
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Strand-specific (asymmetric) contribution of phosphodiester linkages on RNA polymerase II transcriptional efficiency and fidelity.
    Xu L; Zhang L; Chong J; Xu J; Huang X; Wang D
    Proc Natl Acad Sci U S A; 2014 Aug; 111(32):E3269-76. PubMed ID: 25074911
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Comprehensive determination of transcription start sites derived from all RNA polymerases using ReCappable-seq.
    Yan B; Tzertzinis G; Schildkraut I; Ettwiller L
    Genome Res; 2022 Jan; 32(1):162-174. PubMed ID: 34815308
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Rpb4, a subunit of RNA polymerase II, enables the enzyme to transcribe at temperature extremes in vitro.
    Rosenheck S; Choder M
    J Bacteriol; 1998 Dec; 180(23):6187-92. PubMed ID: 9829926
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Widespread epistasis shapes RNA Polymerase II active site function and evolution.
    Duan B; Qiu C; Sze SH; Kaplan C
    bioRxiv; 2023 Apr; ():. PubMed ID: 36909581
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The yeast SUA7 gene encodes a homolog of human transcription factor TFIIB and is required for normal start site selection in vivo.
    Pinto I; Ware DE; Hampsey M
    Cell; 1992 Mar; 68(5):977-88. PubMed ID: 1547497
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Activation and reactivation of the RNA polymerase II trigger loop for intrinsic RNA cleavage and catalysis.
    Čabart P; Jin H; Li L; Kaplan CD
    Transcription; 2014; 5(3):e28869. PubMed ID: 25764335
    [TBL] [Abstract][Full Text] [Related]  

  • 92. A comprehensive mechanism for 5-carboxylcytosine-induced transcriptional pausing revealed by Markov state models.
    Konovalov KA; Wang W; Wang G; Goonetilleke EC; Gao X; Wang D; Huang X
    J Biol Chem; 2021; 296():100735. PubMed ID: 33991521
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The rye mutants identify a role for Ssn/Srb proteins of the RNA polymerase II holoenzyme during stationary phase entry in Saccharomyces cerevisiae.
    Chang YW; Howard SC; Budovskaya YV; Rine J; Herman PK
    Genetics; 2001 Jan; 157(1):17-26. PubMed ID: 11139488
    [TBL] [Abstract][Full Text] [Related]  

  • 94. The transcriptional elongation rate regulates alternative polyadenylation in yeast.
    Geisberg JV; Moqtaderi Z; Struhl K
    Elife; 2020 Aug; 9():. PubMed ID: 32845240
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Protein interactions within Saccharomyces cerevisiae Elongator, a complex essential for Kluyveromyces lactis zymocicity.
    Fichtner L; Frohloff F; Jablonowski D; Stark MJ; Schaffrath R
    Mol Microbiol; 2002 Aug; 45(3):817-26. PubMed ID: 12139626
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Mutations in a conserved region of RNA polymerase II influence the accuracy of mRNA start site selection.
    Hekmatpanah DS; Young RA
    Mol Cell Biol; 1991 Nov; 11(11):5781-91. PubMed ID: 1922077
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Dissecting the chemical interactions and substrate structural signatures governing RNA polymerase II trigger loop closure by synthetic nucleic acid analogues.
    Xu L; Butler KV; Chong J; Wengel J; Kool ET; Wang D
    Nucleic Acids Res; 2014 May; 42(9):5863-70. PubMed ID: 24692664
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The mechanism of variability in transcription start site selection.
    Yu L; Winkelman JT; Pukhrambam C; Strick TR; Nickels BE; Ebright RH
    Elife; 2017 Nov; 6():. PubMed ID: 29168694
    [TBL] [Abstract][Full Text] [Related]  

  • 99. TFIIB-related factors in RNA polymerase I transcription.
    Knutson BA; Hahn S
    Biochim Biophys Acta; 2013; 1829(3-4):265-73. PubMed ID: 22960599
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Protein characterization of Saccharomyces cerevisiae RNA polymerase II after in vivo cross-linking.
    Tardiff DF; Abruzzi KC; Rosbash M
    Proc Natl Acad Sci U S A; 2007 Dec; 104(50):19948-53. PubMed ID: 18077427
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.