These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 25381198)
1. A Race Model for Responses and Response Times in Tests. Ranger J; Kuhn JT; Gaviria JL Psychometrika; 2015 Sep; 80(3):791-810. PubMed ID: 25381198 [TBL] [Abstract][Full Text] [Related]
2. An accumulator model for responses and response times in tests based on the proportional hazards model. Ranger J; Kuhn JT Br J Math Stat Psychol; 2014 Nov; 67(3):388-407. PubMed ID: 23992122 [TBL] [Abstract][Full Text] [Related]
3. A latent trait model for response times on tests employing the proportional hazards model. Ranger J; Ortner T Br J Math Stat Psychol; 2012 May; 65(2):334-49. PubMed ID: 22011034 [TBL] [Abstract][Full Text] [Related]
4. Marginal likelihood inference for a model for item responses and response times. Glas CA; van der Linden WJ Br J Math Stat Psychol; 2010 Nov; 63(Pt 3):603-26. PubMed ID: 20109271 [TBL] [Abstract][Full Text] [Related]
5. Robust estimation of the hierarchical model for responses and response times. Ranger J; Wolgast A; Kuhn JT Br J Math Stat Psychol; 2019 Feb; 72(1):83-107. PubMed ID: 30051905 [TBL] [Abstract][Full Text] [Related]
6. Estimation in regression models for longitudinal binary data with outcome-dependent follow-up. Fitzmaurice GM; Lipsitz SR; Ibrahim JG; Gelber R; Lipshultz S Biostatistics; 2006 Jul; 7(3):469-85. PubMed ID: 16428260 [TBL] [Abstract][Full Text] [Related]
7. Testing and modelling non-normality within the one-factor model. Molenaar D; Dolan CV; Verhelst ND Br J Math Stat Psychol; 2010 May; 63(Pt 2):293-317. PubMed ID: 19796474 [TBL] [Abstract][Full Text] [Related]
8. Modeling Differences Between Response Times of Correct and Incorrect Responses. Bolsinova M; Tijmstra J Psychometrika; 2019 Dec; 84(4):1018-1046. PubMed ID: 31463656 [TBL] [Abstract][Full Text] [Related]
9. Limited information estimation of the diffusion-based item response theory model for responses and response times. Ranger J; Kuhn JT; Szardenings C Br J Math Stat Psychol; 2016 May; 69(2):122-38. PubMed ID: 26853083 [TBL] [Abstract][Full Text] [Related]
10. Score-Based Tests of Differential Item Functioning via Pairwise Maximum Likelihood Estimation. Wang T; Strobl C; Zeileis A; Merkle EC Psychometrika; 2018 Mar; 83(1):132-155. PubMed ID: 29150815 [TBL] [Abstract][Full Text] [Related]
11. The construction and implementation of user-defined fit tests for use with marginal maximum likelihood estimation and generalized item response models. Adams RJ; Wu ML J Appl Meas; 2009; 10(4):355-70. PubMed ID: 19934525 [TBL] [Abstract][Full Text] [Related]
12. Correction for Item Response Theory Latent Trait Measurement Error in Linear Mixed Effects Models. Wang C; Xu G; Zhang X Psychometrika; 2019 Sep; 84(3):673-700. PubMed ID: 31183670 [TBL] [Abstract][Full Text] [Related]
13. Accelerated test models for system strength based on Birnbaum-Saunders distributions. Owen WJ; Padgett WJ Lifetime Data Anal; 1999 Jun; 5(2):133-47. PubMed ID: 10408181 [TBL] [Abstract][Full Text] [Related]
14. The Lognormal Race: A Cognitive-Process Model of Choice and Latency with Desirable Psychometric Properties. Rouder JN; Province JM; Morey RD; Gomez P; Heathcote A Psychometrika; 2015 Jun; 80(2):491-513. PubMed ID: 24522340 [TBL] [Abstract][Full Text] [Related]
15. Efficient Standard Error Formulas of Ability Estimators with Dichotomous Item Response Models. Magis D Psychometrika; 2016 Mar; 81(1):184-200. PubMed ID: 25691364 [TBL] [Abstract][Full Text] [Related]
16. Hidden Markov Item Response Theory Models for Responses and Response Times. Molenaar D; Oberski D; Vermunt J; De Boeck P Multivariate Behav Res; 2016; 51(5):606-626. PubMed ID: 27712114 [TBL] [Abstract][Full Text] [Related]
17. Two-Stage maximum likelihood estimation in the misspecified restricted latent class model. Wang S Br J Math Stat Psychol; 2018 May; 71(2):300-333. PubMed ID: 29080215 [TBL] [Abstract][Full Text] [Related]
18. Response times from ensembles of accumulators. Zandbelt B; Purcell BA; Palmeri TJ; Logan GD; Schall JD Proc Natl Acad Sci U S A; 2014 Feb; 111(7):2848-53. PubMed ID: 24550315 [TBL] [Abstract][Full Text] [Related]
19. A Mixture Cure-Rate Model for Responses and Response Times in Time-Limit Tests. Lee YH; Ying Z Psychometrika; 2015 Sep; 80(3):748-75. PubMed ID: 25280442 [TBL] [Abstract][Full Text] [Related]
20. The linear transformation model with frailties for the analysis of item response times. Wang C; Chang HH; Douglas JA Br J Math Stat Psychol; 2013 Feb; 66(1):144-68. PubMed ID: 22506914 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]