BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 25381238)

  • 1. Engineering Neurospora crassa for improved cellobiose and cellobionate production.
    Hildebrand A; Szewczyk E; Lin H; Kasuga T; Fan Z
    Appl Environ Microbiol; 2015 Jan; 81(2):597-603. PubMed ID: 25381238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering Neurospora crassa for cellobionate production directly from cellulose without any enzyme addition.
    Lin H; Hildebrand A; Kasuga T; Fan Z
    Enzyme Microb Technol; 2017 Apr; 99():25-31. PubMed ID: 28193328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of cellobionate from cellulose using an engineered Neurospora crassa strain with laccase and redox mediator addition.
    Hildebrand A; Kasuga T; Fan Z
    PLoS One; 2015; 10(4):e0123006. PubMed ID: 25849253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct cellobiose production from cellulose using sextuple beta-glucosidase gene deletion Neurospora crassa mutants.
    Wu W; Hildebrand A; Kasuga T; Xiong X; Fan Z
    Enzyme Microb Technol; 2013 Mar; 52(3):184-9. PubMed ID: 23410930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of lignocellulose-degrading enzymes in Neurospora crassa by cellodextrins.
    Znameroski EA; Coradetti ST; Roche CM; Tsai JC; Iavarone AT; Cate JH; Glass NL
    Proc Natl Acad Sci U S A; 2012 Apr; 109(16):6012-7. PubMed ID: 22474347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for transceptor function of cellodextrin transporters in Neurospora crassa.
    Znameroski EA; Li X; Tsai JC; Galazka JM; Glass NL; Cate JH
    J Biol Chem; 2014 Jan; 289(5):2610-9. PubMed ID: 24344125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel biochemical route for fuels and chemicals production from cellulosic biomass.
    Fan Z; Wu W; Hildebrand A; Kasuga T; Zhang R; Xiong X
    PLoS One; 2012; 7(2):e31693. PubMed ID: 22384058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conversion of Deproteinized Cheese Whey to Lactobionate by an Engineered Neurospora crassa Strain F5.
    Poltorak A; Zhou X; Kasuga T; Xu Y; Fan Z
    Appl Biochem Biotechnol; 2024 Mar; 196(3):1292-1303. PubMed ID: 37392323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Proteome Profiling Reveals Cellobiose-Dependent Protein Processing and Export Pathways for the Lignocellulolytic Response in Neurospora crassa.
    Liu D; Liu Y; Zhang D; Chen X; Liu Q; Xiong B; Zhang L; Wei L; Wang Y; Fang H; Liesche J; Wei Y; Glass NL; Hao Z; Chen S
    Appl Environ Microbiol; 2020 Jul; 86(15):. PubMed ID: 32471912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disruption of non-anchored cell wall protein NCW-1 promotes cellulase production by increasing cellobiose uptake in Neurospora crassa.
    Lin L; Chen Y; Li J; Wang S; Sun W; Tian C
    Biotechnol Lett; 2017 Apr; 39(4):545-551. PubMed ID: 28039555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering the filamentous fungus Neurospora crassa for lipid production from lignocellulosic biomass.
    Roche CM; Glass NL; Blanch HW; Clark DS
    Biotechnol Bioeng; 2014 Jun; 111(6):1097-107. PubMed ID: 24700367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of cellodextrin transporters from Neurospora crassa in Saccharomyces cerevisiae for cellobiose fermentation.
    Kim H; Lee WH; Galazka JM; Cate JH; Jin YS
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1087-94. PubMed ID: 24190499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BETA-GLUCOSIDASE SYSTEM OF NEUROSPORA CRASSA. I. BETA-GLUCOSIDASE AND CELLULASE ACTIVITIES OF MUTANT AND WILD-TYPE STRAINS.
    EBERHART B; CROSS DF; CHASE LR
    J Bacteriol; 1964 Apr; 87(4):761-70. PubMed ID: 14137612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and physiological characterization of cellobiose-consuming Yarrowia lipolytica.
    Lane S; Zhang S; Wei N; Rao C; Jin YS
    Biotechnol Bioeng; 2015 May; 112(5):1012-22. PubMed ID: 25421388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Location and contribution of individual β-glucosidase from Neurospora crassa to total β-glucosidase activity.
    Wu W; Kasuga T; Xiong X; Ma D; Fan Z
    Arch Microbiol; 2013 Dec; 195(12):823-9. PubMed ID: 24162785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the CRE-1 cellulolytic regulon in Neurospora crassa.
    Sun J; Glass NL
    PLoS One; 2011; 6(9):e25654. PubMed ID: 21980519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellodextrin transport in yeast for improved biofuel production.
    Galazka JM; Tian C; Beeson WT; Martinez B; Glass NL; Cate JH
    Science; 2010 Oct; 330(6000):84-6. PubMed ID: 20829451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi.
    Coradetti ST; Craig JP; Xiong Y; Shock T; Tian C; Glass NL
    Proc Natl Acad Sci U S A; 2012 May; 109(19):7397-402. PubMed ID: 22532664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa.
    Phillips CM; Beeson WT; Cate JH; Marletta MA
    ACS Chem Biol; 2011 Dec; 6(12):1399-406. PubMed ID: 22004347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cofermentation of cellobiose and galactose by an engineered Saccharomyces cerevisiae strain.
    Ha SJ; Wei Q; Kim SR; Galazka JM; Cate JH; Jin YS
    Appl Environ Microbiol; 2011 Aug; 77(16):5822-5. PubMed ID: 21705527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.