BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25381298)

  • 1. Mutant SNAP25B causes myasthenia, cortical hyperexcitability, ataxia, and intellectual disability.
    Shen XM; Selcen D; Brengman J; Engel AG
    Neurology; 2014 Dec; 83(24):2247-55. PubMed ID: 25381298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sphingosine facilitates SNARE complex assembly and activates synaptic vesicle exocytosis.
    Darios F; Wasser C; Shakirzyanova A; Giniatullin A; Goodman K; Munoz-Bravo JL; Raingo J; Jorgacevski J; Kreft M; Zorec R; Rosa JM; Gandia L; Gutiérrez LM; Binz T; Giniatullin R; Kavalali ET; Davletov B
    Neuron; 2009 Jun; 62(5):683-94. PubMed ID: 19524527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of gecko SNAP25b in spinal cord regeneration by promoting outgrowth and elongation of neurites.
    Wang Y; Dong Y; Song H; Liu Y; Liu M; Yuan Y; Ding F; Gu X; Wang Y
    Int J Biochem Cell Biol; 2012 Dec; 44(12):2288-98. PubMed ID: 23010346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca(2+)-synaptotagmin directly regulates t-SNARE function during reconstituted membrane fusion.
    Bhalla A; Chicka MC; Tucker WC; Chapman ER
    Nat Struct Mol Biol; 2006 Apr; 13(4):323-30. PubMed ID: 16565726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphomimetic mutation of Ser-187 of SNAP-25 increases both syntaxin binding and highly Ca2+-sensitive exocytosis.
    Yang Y; Craig TJ; Chen X; Ciufo LF; Takahashi M; Morgan A; Gillis KD
    J Gen Physiol; 2007 Mar; 129(3):233-44. PubMed ID: 17325194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion.
    Hu K; Carroll J; Fedorovich S; Rickman C; Sukhodub A; Davletov B
    Nature; 2002 Feb; 415(6872):646-50. PubMed ID: 11832947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dominant mutation in Snap25 causes impaired vesicle trafficking, sensorimotor gating, and ataxia in the blind-drunk mouse.
    Jeans AF; Oliver PL; Johnson R; Capogna M; Vikman J; Molnár Z; Babbs A; Partridge CJ; Salehi A; Bengtsson M; Eliasson L; Rorsman P; Davies KE
    Proc Natl Acad Sci U S A; 2007 Feb; 104(7):2431-6. PubMed ID: 17283335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ternary SNARE complexes are enriched in lipid rafts during mast cell exocytosis.
    Puri N; Roche PA
    Traffic; 2006 Nov; 7(11):1482-94. PubMed ID: 16984405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast vesicle fusion in living cells requires at least three SNARE complexes.
    Mohrmann R; de Wit H; Verhage M; Neher E; Sørensen JB
    Science; 2010 Oct; 330(6003):502-5. PubMed ID: 20847232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. α-Synuclein may cross-bridge v-SNARE and acidic phospholipids to facilitate SNARE-dependent vesicle docking.
    Lou X; Kim J; Hawk BJ; Shin YK
    Biochem J; 2017 Jun; 474(12):2039-2049. PubMed ID: 28495859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel missense SNAP25b mutation in two affected siblings from an Israeli family showing seizures and cerebellar ataxia.
    Fukuda H; Imagawa E; Hamanaka K; Fujita A; Mitsuhashi S; Miyatake S; Mizuguchi T; Takata A; Miyake N; Kramer U; Matsumoto N; Fattal-Valevski A
    J Hum Genet; 2018 May; 63(5):673-676. PubMed ID: 29491473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The t-SNARE syntaxin is sufficient for spontaneous fusion of synaptic vesicles to planar membranes.
    Woodbury DJ; Rognlien K
    Cell Biol Int; 2000; 24(11):809-18. PubMed ID: 11067766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel synaptobrevin-1 mutation causes fatal congenital myasthenic syndrome.
    Shen XM; Scola RH; Lorenzoni PJ; Kay CS; Werneck LC; Brengman J; Selcen D; Engel AG
    Ann Clin Transl Neurol; 2017 Feb; 4(2):130-138. PubMed ID: 28168212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptobrevin 1 mediates vesicle priming and evoked release in a subpopulation of hippocampal neurons.
    Zimmermann J; Trimbuch T; Rosenmund C
    J Neurophysiol; 2014 Sep; 112(6):1559-65. PubMed ID: 24944211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Positively charged amino acids at the SNAP-25 C terminus determine fusion rates, fusion pore properties, and energetics of tight SNARE complex zippering.
    Fang Q; Zhao Y; Herbst AD; Kim BN; Lindau M
    J Neurosci; 2015 Feb; 35(7):3230-9. PubMed ID: 25698757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exocytosis and synaptic vesicle function.
    Shin OH
    Compr Physiol; 2014 Jan; 4(1):149-75. PubMed ID: 24692137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SNARE conformational changes that prepare vesicles for exocytosis.
    Takahashi N; Hatakeyama H; Okado H; Noguchi J; Ohno M; Kasai H
    Cell Metab; 2010 Jul; 12(1):19-29. PubMed ID: 20620992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SNAREs Controlling Vesicular Release of BDNF and Development of Callosal Axons.
    Shimojo M; Courchet J; Pieraut S; Torabi-Rander N; Sando R; Polleux F; Maximov A
    Cell Rep; 2015 May; 11(7):1054-66. PubMed ID: 25959820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of Snapin in neurosecretion: snapin knock-out mice exhibit impaired calcium-dependent exocytosis of large dense-core vesicles in chromaffin cells.
    Tian JH; Wu ZX; Unzicker M; Lu L; Cai Q; Li C; Schirra C; Matti U; Stevens D; Deng C; Rettig J; Sheng ZH
    J Neurosci; 2005 Nov; 25(45):10546-55. PubMed ID: 16280592
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.