These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 25381433)

  • 61. Evidence for the involvement of hydraulic root or shoot adjustments as mechanisms underlying water deficit tolerance in two Sorghum bicolor genotypes.
    Sutka MR; Manzur ME; Vitali VA; Micheletto S; Amodeo G
    J Plant Physiol; 2016 Mar; 192():13-20. PubMed ID: 26803215
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Leaf photosynthesis and carbohydrates of CO₂-enriched maize and grain sorghum exposed to a short period of soil water deficit during vegetative development.
    Kakani VG; Vu JC; Allen LH; Boote KJ
    J Plant Physiol; 2011 Dec; 168(18):2169-76. PubMed ID: 21835494
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Anthesis date mainly explained correlations between post-anthesis leaf senescence, grain yield, and grain protein concentration in a winter wheat population segregating for flowering time QTLs.
    Bogard M; Jourdan M; Allard V; Martre P; Perretant MR; Ravel C; Heumez E; Orford S; Snape J; Griffiths S; Gaju O; Foulkes J; Le Gouis J
    J Exp Bot; 2011 Jun; 62(10):3621-36. PubMed ID: 21414962
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Influence of drought on leaf photosynthetic capacity and root growth of soybeans at grain filling stage].
    Guo SJ; Yang KM; Huo J; Zhou YH; Wang YP; Li GQ
    Ying Yong Sheng Tai Xue Bao; 2015 May; 26(5):1419-25. PubMed ID: 26571660
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Deep root growth, ABA adjustments and root water uptake response to soil water deficit in giant reed.
    Zegada-Lizarazu W; Monti A
    Ann Bot; 2019 Oct; 124(4):605-616. PubMed ID: 30698652
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Genetic dissection of flag leaf morphology in wheat (Triticum aestivum L.) under diverse water regimes.
    Yang D; Liu Y; Cheng H; Chang L; Chen J; Chai S; Li M
    BMC Genet; 2016 Jun; 17(1):94. PubMed ID: 27352616
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Restriction of transpiration rate under high vapour pressure deficit and non-limiting water conditions is important for terminal drought tolerance in cowpea.
    Belko N; Zaman-Allah M; Diop NN; Cisse N; Zombre G; Ehlers JD; Vadez V
    Plant Biol (Stuttg); 2013 Mar; 15(2):304-16. PubMed ID: 22823007
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and related model species.
    Woldesemayat AA; Modise DM; Gemeildien J; Ndimba BK; Christoffels A
    PLoS One; 2018; 13(3):e0192678. PubMed ID: 29590108
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Photosynthetic Responses to High Temperature and Strong Light Suggest Potential Post-flowering Drought Tolerance of Sorghum Japanese Landrace Takakibi.
    Ohnishi N; Wacera W F; Sakamoto W
    Plant Cell Physiol; 2019 Sep; 60(9):2086-2099. PubMed ID: 31147706
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Yield determinants, root distribution and soil water uptake in maize (Zea mays) hybrids differing in canopy senescence under post-silking drought.
    Antonietta M; Maydup ML; Cano MG; Fanello DD; Acciaresi HA; Guiamet JJ
    Funct Plant Biol; 2021 Oct; 48(11):1124-1138. PubMed ID: 34587473
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Genetic analysis for drought resistance of rice at reproductive stage in field with different types of soil.
    Yue B; Xiong L; Xue W; Xing Y; Luo L; Xu C
    Theor Appl Genet; 2005 Oct; 111(6):1127-36. PubMed ID: 16075205
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Combining field performance with controlled environment plant imaging to identify the genetic control of growth and transpiration underlying yield response to water-deficit stress in wheat.
    Parent B; Shahinnia F; Maphosa L; Berger B; Rabie H; Chalmers K; Kovalchuk A; Langridge P; Fleury D
    J Exp Bot; 2015 Sep; 66(18):5481-92. PubMed ID: 26179580
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Stomatal conductance responses to evaporative demand conferred by rice drought-yield quantitative trait locus qDTY
    Henry A; Stuart-Williams H; Dixit S; Kumar A; Farquhar G
    Funct Plant Biol; 2019 Jun; 46(7):660-669. PubMed ID: 32172773
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Using chromosome introgression lines to map quantitative trait loci for photosynthesis parameters in rice (Oryza sativa L.) leaves under drought and well-watered field conditions.
    Gu J; Yin X; Struik PC; Stomph TJ; Wang H
    J Exp Bot; 2012 Jan; 63(1):455-69. PubMed ID: 21984650
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Root-ABA1 QTL affects root lodging, grain yield, and other agronomic traits in maize grown under well-watered and water-stressed conditions.
    Landi P; Sanguineti MC; Liu C; Li Y; Wang TY; Giuliani S; Bellotti M; Salvi S; Tuberosa R
    J Exp Bot; 2007; 58(2):319-26. PubMed ID: 17050640
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Linkages and Interactions Analysis of Major Effect Drought Grain Yield QTLs in Rice.
    Vikram P; Swamy BP; Dixit S; Trinidad J; Sta Cruz MT; Maturan PC; Amante M; Kumar A
    PLoS One; 2016; 11(3):e0151532. PubMed ID: 27018583
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Simulating the yield impacts of organ-level quantitative trait loci associated with drought response in maize: a "gene-to-phenotype" modeling approach.
    Chenu K; Chapman SC; Tardieu F; McLean G; Welcker C; Hammer GL
    Genetics; 2009 Dec; 183(4):1507-23. PubMed ID: 19786622
    [TBL] [Abstract][Full Text] [Related]  

  • 78. QTL mapping of root traits in phosphorus-deficient soils reveals important genomic regions for improving NDVI and grain yield in barley.
    Gong X; McDonald G
    Theor Appl Genet; 2017 Sep; 130(9):1885-1902. PubMed ID: 28593327
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Meta-QTL and ortho-MQTL analyses identified genomic regions controlling rice yield, yield-related traits and root architecture under water deficit conditions.
    Khahani B; Tavakol E; Shariati V; Rossini L
    Sci Rep; 2021 Mar; 11(1):6942. PubMed ID: 33767323
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The importance of slow canopy wilting in drought tolerance in soybean.
    Ye H; Song L; Schapaugh WT; Ali ML; Sinclair TR; Riar MK; Raymond RN; Li Y; Vuong T; Valliyodan B; Pizolato Neto A; Klepadlo M; Song Q; Shannon JG; Chen P; Nguyen HT
    J Exp Bot; 2020 Jan; 71(2):642-652. PubMed ID: 30980084
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.