These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 25381433)
81. Plant breeding and drought in C3 cereals: what should we breed for? Araus JL; Slafer GA; Reynolds MP; Royo C Ann Bot; 2002 Jun; 89 Spec No(7):925-40. PubMed ID: 12102518 [TBL] [Abstract][Full Text] [Related]
82. Stay-green traits to improve wheat adaptation in well-watered and water-limited environments. Christopher JT; Christopher MJ; Borrell AK; Fletcher S; Chenu K J Exp Bot; 2016 Sep; 67(17):5159-72. PubMed ID: 27443279 [TBL] [Abstract][Full Text] [Related]
83. Improved tolerance to post-anthesis drought stress by pre-drought priming at vegetative stages in drought-tolerant and -sensitive wheat cultivars. Abid M; Tian Z; Ata-Ul-Karim ST; Liu Y; Cui Y; Zahoor R; Jiang D; Dai T Plant Physiol Biochem; 2016 Sep; 106():218-27. PubMed ID: 27179928 [TBL] [Abstract][Full Text] [Related]
84. Silicon-mediated changes in polyamine and 1-aminocyclopropane-1-carboxylic acid are involved in silicon-induced drought resistance in Sorghum bicolor L. Yin L; Wang S; Liu P; Wang W; Cao D; Deng X; Zhang S Plant Physiol Biochem; 2014 Jul; 80():268-77. PubMed ID: 24813726 [TBL] [Abstract][Full Text] [Related]
85. Hydraulics and gas exchange recover more rapidly from severe drought stress in small pot-grown grapevines than in field-grown plants. Romero P; Botía P; Keller M J Plant Physiol; 2017 Sep; 216():58-73. PubMed ID: 28577386 [TBL] [Abstract][Full Text] [Related]
86. Elevated [CO2] mitigates the effect of surface drought by stimulating root growth to access sub-soil water. Uddin S; Löw M; Parvin S; Fitzgerald GJ; Tausz-Posch S; Armstrong R; O'Leary G; Tausz M PLoS One; 2018; 13(6):e0198928. PubMed ID: 29902235 [TBL] [Abstract][Full Text] [Related]
88. Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivum L.). Tahmasebi S; Heidari B; Pakniyat H; McIntyre CL Genome; 2017 Jan; 60(1):26-45. PubMed ID: 27996306 [TBL] [Abstract][Full Text] [Related]
89. Transcripts of wheat at a target locus on chromosome 6B associated with increased yield, leaf mass and chlorophyll index under combined drought and heat stress. Schmidt J; Garcia M; Brien C; Kalambettu P; Garnett T; Fleury D; Tricker PJ PLoS One; 2020; 15(11):e0241966. PubMed ID: 33166353 [TBL] [Abstract][Full Text] [Related]
90. Genome-wide association studies identify putative pleiotropic locus mediating drought tolerance in sorghum. Maina F; Harou A; Hamidou F; Morris GP Plant Direct; 2022 Jun; 6(6):e413. PubMed ID: 35774626 [TBL] [Abstract][Full Text] [Related]
91. Identification and independent validation of a stable yield and thousand grain weight QTL on chromosome 6A of hexaploid wheat (Triticum aestivum L.). Simmonds J; Scott P; Leverington-Waite M; Turner AS; Brinton J; Korzun V; Snape J; Uauy C BMC Plant Biol; 2014 Jul; 14():191. PubMed ID: 25034643 [TBL] [Abstract][Full Text] [Related]
92. Effects of PEG-induced osmotic stress on growth and dhurrin levels of forage sorghum. O'Donnell NH; Møller BL; Neale AD; Hamill JD; Blomstedt CK; Gleadow RM Plant Physiol Biochem; 2013 Dec; 73():83-92. PubMed ID: 24080394 [TBL] [Abstract][Full Text] [Related]
93. Using environmental clustering to identify specific drought tolerance QTLs in bread wheat (T. aestivum L.). Touzy G; Rincent R; Bogard M; Lafarge S; Dubreuil P; Mini A; Deswarte JC; Beauchêne K; Le Gouis J; Praud S Theor Appl Genet; 2019 Oct; 132(10):2859-2880. PubMed ID: 31324929 [TBL] [Abstract][Full Text] [Related]
94. Genetic variation in a grapevine progeny (Vitis vinifera L. cvs Grenache×Syrah) reveals inconsistencies between maintenance of daytime leaf water potential and response of transpiration rate under drought. Coupel-Ledru A; Lebon É; Christophe A; Doligez A; Cabrera-Bosquet L; Péchier P; Hamard P; This P; Simonneau T J Exp Bot; 2014 Nov; 65(21):6205-18. PubMed ID: 25381432 [TBL] [Abstract][Full Text] [Related]
95. Multi-Spectral Imaging from an Unmanned Aerial Vehicle Enables the Assessment of Seasonal Leaf Area Dynamics of Sorghum Breeding Lines. Potgieter AB; George-Jaeggli B; Chapman SC; Laws K; Suárez Cadavid LA; Wixted J; Watson J; Eldridge M; Jordan DR; Hammer GL Front Plant Sci; 2017; 8():1532. PubMed ID: 28951735 [TBL] [Abstract][Full Text] [Related]
96. Integrating stay-green and PIN-FORMED genes: PIN-FORMED genes as potential targets for designing climate-resilient cereal ideotypes. Wong ACS; van Oosterom EJ; Godwin ID; Borrell AK AoB Plants; 2023 Jul; 15(4):plad040. PubMed ID: 37448862 [TBL] [Abstract][Full Text] [Related]
98. Multi-locus genome-wide association study for grain yield and drought tolerance indices in sorghum accessions. Tsehaye Y; Menamo TM; Abay F; Tadesse T; Bantte K Plant Genome; 2024 Sep; ():e20505. PubMed ID: 39256993 [TBL] [Abstract][Full Text] [Related]
99. Regulation of tillering in sorghum: environmental effects. Kim HK; van Oosterom E; Dingkuhn M; Luquet D; Hammer G Ann Bot; 2010 Jul; 106(1):57-67. PubMed ID: 20421230 [TBL] [Abstract][Full Text] [Related]
100. Characterizing stay-green in barley across diverse environments: unveiling novel haplotypes. Brunner SM; Dinglasan E; Baraibar S; Alahmad S; Katsikis C; van der Meer S; Godoy J; Moody D; Smith M; Hickey L; Robinson H Theor Appl Genet; 2024 May; 137(6):120. PubMed ID: 38709310 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]