These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 2538151)

  • 1. Effects of calcium and calcium analogs on calmodulin: a Fourier transform infrared and electron spin resonance investigation.
    Rainteau D; Wolf C; Lavialle F
    Biochim Biophys Acta; 1989 Mar; 1011(1):81-7. PubMed ID: 2538151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of Ca2+ and Cd2+ on the secondary and tertiary structure of bovine testis calmodulin. A circular-dichroism study.
    Martin SR; Bayley PM
    Biochem J; 1986 Sep; 238(2):485-90. PubMed ID: 3800949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological effects of rare earth protein complexes: influence of lanthanide ions Eu3+, Tb3+ on secondary structure of calmodulins.
    Song YY; Xu YZ; Weng SF; Wang LB; Li XF; Zhang TF; Wu JG
    Biospectroscopy; 1999; 5(6):371-7. PubMed ID: 10604289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of smooth muscle myosin light chain kinase activity by a monoclonal antibody which recognizes the calmodulin-binding region.
    Araki Y; Ikebe M
    Biochem J; 1991 May; 275 ( Pt 3)(Pt 3):679-84. PubMed ID: 1710106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EPR studies show that all lanthanides do not have the same order of binding to calmodulin.
    Buccigross JM; Nelson DJ
    Biochem Biophys Res Commun; 1986 Aug; 138(3):1243-9. PubMed ID: 3019337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calmodulin and troponin C structures studied by Fourier transform infrared spectroscopy: effects of Ca2+ and Mg2+ binding.
    Trewhella J; Liddle WK; Heidorn DB; Strynadka N
    Biochemistry; 1989 Feb; 28(3):1294-301. PubMed ID: 2713365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of spin-labeled calmodulin with trifluoperazine and phosphodiesterase in the presence of Ca(II), Cd(II), La(III), Tb(III), and Lu(III).
    Buccigross JM; Nelson DJ
    J Inorg Biochem; 1988 Jun; 33(2):139-47. PubMed ID: 2842452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in conformation of spin-labeled calmodulin by phospholipids.
    Suzuki T; Katoh H; Uchida MK
    Biochim Biophys Acta; 1986 Oct; 873(3):379-86. PubMed ID: 3019408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of Ca2+-sensitive myosin ATPase activity by cadmium.
    Nimura E; Miura K; Shinobu LA; Imura N
    Ecotoxicol Environ Saf; 1987 Oct; 14(2):184-9. PubMed ID: 2826103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-binding properties of calmodulin.
    Wang CL; Aquaron RR; Leavis PC; Gergely J
    Eur J Biochem; 1982 May; 124(1):7-12. PubMed ID: 7084230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vanadium (IV) inhibits calmodulin-stimulated skeletal muscle myosin light chain kinase activity.
    Parra-Diaz D; Echegoyen L; Zot HG; Puett D
    Biofactors; 1995 May; 5(1):25-8. PubMed ID: 7546215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Divalent cation dependent conformations of brain calmodulin detected by 1H NMR.
    Sutoo D; Akiyama K; Fujii N; Matsushita K
    Jpn J Pharmacol; 1986 Jan; 40(1):169-73. PubMed ID: 3959350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 113Cd-NMR evidence for cooperative interaction between amino- and carboxyl-terminal domains of calmodulin.
    Ikura M; Hasegawa N; Aimoto S; Yazawa M; Yagi K; Hikichi K
    Biochem Biophys Res Commun; 1989 Jun; 161(3):1233-8. PubMed ID: 2742586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium-dependent and -independent interactions of the calmodulin-binding domain of cyclic nucleotide phosphodiesterase with calmodulin.
    Yuan T; Walsh MP; Sutherland C; Fabian H; Vogel HJ
    Biochemistry; 1999 Feb; 38(5):1446-55. PubMed ID: 9931009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 1H Fourier transform NMR studies of insulin: coordination of Ca2+ to the Glu(B13) site drives hexamer assembly and induces a conformation change.
    Palmieri R; Lee RW; Dunn MF
    Biochemistry; 1988 May; 27(9):3387-97. PubMed ID: 2898949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Ca2+ and trifluoperazine on the structure of calmodulin. A 1H-nuclear magnetic resonance study.
    Krebs J; Carafoli E
    Eur J Biochem; 1982 Jun; 124(3):619-27. PubMed ID: 7106112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cadmium-113 nuclear magnetic resonance studies of proteolytic fragments of calmodulin: assignment of strong and weak cation binding sites.
    Andersson A; Forsén S; Thulin E; Vogel HJ
    Biochemistry; 1983 May; 22(10):2309-13. PubMed ID: 6860630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural dynamics in the C-terminal domain of calmodulin at low calcium levels.
    Malmendal A; Evenäs J; Forsén S; Akke M
    J Mol Biol; 1999 Nov; 293(4):883-99. PubMed ID: 10543974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative abilities of lanthanide ions La3+ and Tb3+ to substitute for Ca2+ in regulating phospholipid-sensitive Ca2+-dependent protein kinase and myosin light chain kinase.
    Mazzei GJ; Qi DF; Schatzman RC; Raynor RL; Turner RS; Kuo JF
    Life Sci; 1983 Jul; 33(2):119-29. PubMed ID: 6688112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic studies show that Ca2+ and Tb3+ have different binding preferences toward the four Ca2+-binding sites of calmodulin.
    Wang CL; Leavis PC; Gergely J
    Biochemistry; 1984 Dec; 23(26):6410-5. PubMed ID: 6529556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.