BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 25381519)

  • 1. Tunneling splitting in double-proton transfer: direct diagonalization results for porphycene.
    Smedarchina Z; Siebrand W; Fernández-Ramos A
    J Chem Phys; 2014 Nov; 141(17):174312. PubMed ID: 25381519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entanglement and co-tunneling of two equivalent protons in hydrogen bond pairs.
    Smedarchina Z; Siebrand W; Fernández-Ramos A
    J Chem Phys; 2018 Mar; 148(10):102307. PubMed ID: 29544290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multidimensional Hamiltonian for tunneling with position-dependent mass.
    Fernández-Ramos A; Smedarchina Z; Siebrand W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033306. PubMed ID: 25314563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculations of Mode-Specific Tunneling of Double-Hydrogen Transfer in Porphycene Agree with and Illuminate Experiment.
    Homayoon Z; Bowman JM; Evangelista FA
    J Phys Chem Lett; 2014 Aug; 5(15):2723-7. PubMed ID: 26277970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From synchronous to sequential double proton transfer: quantum dynamics simulations for the model porphine.
    Accardi A; Barth I; Kühn O; Manz J
    J Phys Chem A; 2010 Oct; 114(42):11252-62. PubMed ID: 20961160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zero-point tunneling splittings in compounds with multiple hydrogen bonds calculated by the rainbow instanton method.
    Smedarchina Z; Siebrand W; Fernández-Ramos A
    J Phys Chem A; 2013 Oct; 117(43):11086-100. PubMed ID: 24093455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ground state tunneling splitting and the zero point energy of malonaldehyde: a quantum Monte Carlo determination.
    Viel A; Coutinho-Neto MD; Manthe U
    J Chem Phys; 2007 Jan; 126(2):024308. PubMed ID: 17228955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The rainbow instanton method: a new approach to tunneling splitting in polyatomics.
    Smedarchina Z; Siebrand W; Fernández-Ramos A
    J Chem Phys; 2012 Dec; 137(22):224105. PubMed ID: 23248985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of asymmetric motions on the tunneling splittings in formic acid dimer.
    Barnes GL; Sibert EL
    J Chem Phys; 2008 Oct; 129(16):164317. PubMed ID: 19045276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mode-specific tunneling using the Qim path: theory and an application to full-dimensional malonaldehyde.
    Wang Y; Bowman JM
    J Chem Phys; 2013 Oct; 139(15):154303. PubMed ID: 24160509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intramolecular proton transfer in malonaldehyde: accurate multilayer multi-configurational time-dependent Hartree calculations.
    Hammer T; Manthe U
    J Chem Phys; 2011 Jun; 134(22):224305. PubMed ID: 21682512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio large-amplitude quantum-tunneling dynamics in vinyl radical: a vibrationally adiabatic approach.
    Nesbitt DJ; Dong F
    Phys Chem Chem Phys; 2008 Apr; 10(15):2113-22. PubMed ID: 18688365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-dimensional tunneling calculations in the imaginary-frequency, rectilinear saddle-point normal mode.
    Wang Y; Bowman JM
    J Chem Phys; 2008 Sep; 129(12):121103. PubMed ID: 19044995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunneling splittings in formic acid dimer: an adiabatic approximation to the Herring formula.
    Jain A; Sibert EL
    J Chem Phys; 2015 Feb; 142(8):084115. PubMed ID: 25725720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Jet cooled spectroscopy of H2DO+: Barrier heights and isotope-dependent tunneling dynamics from H3O+ to D3O+.
    Dong F; Nesbitt DJ
    J Chem Phys; 2006 Oct; 125(14):144311. PubMed ID: 17042594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mixed quantum classical calculation of proton transfer reaction rates: from deep tunneling to over the barrier regimes.
    Xie W; Xu Y; Zhu L; Shi Q
    J Chem Phys; 2014 May; 140(17):174105. PubMed ID: 24811623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Car-Parrinello molecular dynamics study of the intramolecular vibrational mode-sensitive double proton-transfer mechanisms in porphycene.
    Walewski Ł; Waluk J; Lesyng B
    J Phys Chem A; 2010 Feb; 114(6):2313-8. PubMed ID: 20099852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ab initio potential energy surface for the formic acid dimer: zero-point energy, selected anharmonic fundamental energies, and ground-state tunneling splitting calculated in relaxed 1-4-mode subspaces.
    Qu C; Bowman JM
    Phys Chem Chem Phys; 2016 Sep; 18(36):24835-24840. PubMed ID: 27722444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution infrared spectroscopy of the formic acid dimer.
    Birer O; Havenith M
    Annu Rev Phys Chem; 2009; 60():263-75. PubMed ID: 18999993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlated double-proton transfer. I. Theory.
    Smedarchina Z; Siebrand W; Fernández-Ramos A
    J Chem Phys; 2007 Nov; 127(17):174513. PubMed ID: 17994833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.