These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
329 related articles for article (PubMed ID: 25381519)
1. Tunneling splitting in double-proton transfer: direct diagonalization results for porphycene. Smedarchina Z; Siebrand W; Fernández-Ramos A J Chem Phys; 2014 Nov; 141(17):174312. PubMed ID: 25381519 [TBL] [Abstract][Full Text] [Related]
2. Entanglement and co-tunneling of two equivalent protons in hydrogen bond pairs. Smedarchina Z; Siebrand W; Fernández-Ramos A J Chem Phys; 2018 Mar; 148(10):102307. PubMed ID: 29544290 [TBL] [Abstract][Full Text] [Related]
3. Multidimensional Hamiltonian for tunneling with position-dependent mass. Fernández-Ramos A; Smedarchina Z; Siebrand W Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033306. PubMed ID: 25314563 [TBL] [Abstract][Full Text] [Related]
4. Calculations of Mode-Specific Tunneling of Double-Hydrogen Transfer in Porphycene Agree with and Illuminate Experiment. Homayoon Z; Bowman JM; Evangelista FA J Phys Chem Lett; 2014 Aug; 5(15):2723-7. PubMed ID: 26277970 [TBL] [Abstract][Full Text] [Related]
5. From synchronous to sequential double proton transfer: quantum dynamics simulations for the model porphine. Accardi A; Barth I; Kühn O; Manz J J Phys Chem A; 2010 Oct; 114(42):11252-62. PubMed ID: 20961160 [TBL] [Abstract][Full Text] [Related]
6. Zero-point tunneling splittings in compounds with multiple hydrogen bonds calculated by the rainbow instanton method. Smedarchina Z; Siebrand W; Fernández-Ramos A J Phys Chem A; 2013 Oct; 117(43):11086-100. PubMed ID: 24093455 [TBL] [Abstract][Full Text] [Related]
7. The ground state tunneling splitting and the zero point energy of malonaldehyde: a quantum Monte Carlo determination. Viel A; Coutinho-Neto MD; Manthe U J Chem Phys; 2007 Jan; 126(2):024308. PubMed ID: 17228955 [TBL] [Abstract][Full Text] [Related]
8. The rainbow instanton method: a new approach to tunneling splitting in polyatomics. Smedarchina Z; Siebrand W; Fernández-Ramos A J Chem Phys; 2012 Dec; 137(22):224105. PubMed ID: 23248985 [TBL] [Abstract][Full Text] [Related]
9. The effects of asymmetric motions on the tunneling splittings in formic acid dimer. Barnes GL; Sibert EL J Chem Phys; 2008 Oct; 129(16):164317. PubMed ID: 19045276 [TBL] [Abstract][Full Text] [Related]
10. Mode-specific tunneling using the Qim path: theory and an application to full-dimensional malonaldehyde. Wang Y; Bowman JM J Chem Phys; 2013 Oct; 139(15):154303. PubMed ID: 24160509 [TBL] [Abstract][Full Text] [Related]
11. Intramolecular proton transfer in malonaldehyde: accurate multilayer multi-configurational time-dependent Hartree calculations. Hammer T; Manthe U J Chem Phys; 2011 Jun; 134(22):224305. PubMed ID: 21682512 [TBL] [Abstract][Full Text] [Related]
12. Ab initio large-amplitude quantum-tunneling dynamics in vinyl radical: a vibrationally adiabatic approach. Nesbitt DJ; Dong F Phys Chem Chem Phys; 2008 Apr; 10(15):2113-22. PubMed ID: 18688365 [TBL] [Abstract][Full Text] [Related]
13. One-dimensional tunneling calculations in the imaginary-frequency, rectilinear saddle-point normal mode. Wang Y; Bowman JM J Chem Phys; 2008 Sep; 129(12):121103. PubMed ID: 19044995 [TBL] [Abstract][Full Text] [Related]
14. Tunneling splittings in formic acid dimer: an adiabatic approximation to the Herring formula. Jain A; Sibert EL J Chem Phys; 2015 Feb; 142(8):084115. PubMed ID: 25725720 [TBL] [Abstract][Full Text] [Related]
15. Jet cooled spectroscopy of H2DO+: Barrier heights and isotope-dependent tunneling dynamics from H3O+ to D3O+. Dong F; Nesbitt DJ J Chem Phys; 2006 Oct; 125(14):144311. PubMed ID: 17042594 [TBL] [Abstract][Full Text] [Related]
16. Mixed quantum classical calculation of proton transfer reaction rates: from deep tunneling to over the barrier regimes. Xie W; Xu Y; Zhu L; Shi Q J Chem Phys; 2014 May; 140(17):174105. PubMed ID: 24811623 [TBL] [Abstract][Full Text] [Related]
17. Car-Parrinello molecular dynamics study of the intramolecular vibrational mode-sensitive double proton-transfer mechanisms in porphycene. Walewski Ł; Waluk J; Lesyng B J Phys Chem A; 2010 Feb; 114(6):2313-8. PubMed ID: 20099852 [TBL] [Abstract][Full Text] [Related]
18. An ab initio potential energy surface for the formic acid dimer: zero-point energy, selected anharmonic fundamental energies, and ground-state tunneling splitting calculated in relaxed 1-4-mode subspaces. Qu C; Bowman JM Phys Chem Chem Phys; 2016 Sep; 18(36):24835-24840. PubMed ID: 27722444 [TBL] [Abstract][Full Text] [Related]
19. High-resolution infrared spectroscopy of the formic acid dimer. Birer O; Havenith M Annu Rev Phys Chem; 2009; 60():263-75. PubMed ID: 18999993 [TBL] [Abstract][Full Text] [Related]