These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 25381536)

  • 1. Understanding the influence of Coulomb and dispersion interactions on the wetting behavior of ionic liquids.
    Rane KS; Errington JR
    J Chem Phys; 2014 Nov; 141(17):174706. PubMed ID: 25381536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What makes ionic fluids characteristically ionic? A corresponding-states analysis of the surface tension of an ionic model fluid with variable dispersion interactions.
    Leroy F; Weiss VC
    J Chem Phys; 2011 Mar; 134(9):094703. PubMed ID: 21384993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corresponding-states behavior of an ionic model fluid with variable dispersion interactions.
    Weiss VC
    J Chem Phys; 2016 Jun; 144(23):234502. PubMed ID: 27334174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo simulation methods for computing the wetting and drying properties of model systems.
    Rane KS; Kumar V; Errington JR
    J Chem Phys; 2011 Dec; 135(23):234102. PubMed ID: 22191859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding wetting of immiscible liquids near a solid surface using molecular simulation.
    Kumar V; Errington JR
    J Chem Phys; 2013 Aug; 139(6):064110. PubMed ID: 23947846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corresponding-states behavior of a dipolar model fluid with variable dispersion interactions and its relevance to the anomalies of hydrogen fluoride.
    Weiss VC; Leroy F
    J Chem Phys; 2016 Jun; 144(22):224501. PubMed ID: 27306012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo simulation strategies for computing the wetting properties of fluids at geometrically rough surfaces.
    Kumar V; Sridhar S; Errington JR
    J Chem Phys; 2011 Nov; 135(18):184702. PubMed ID: 22088073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using isothermal-isobaric Monte Carlo simulation to study the wetting behavior of model systems.
    Jain K; Rane KS; Errington JR
    J Chem Phys; 2019 Feb; 150(8):084110. PubMed ID: 30823776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular simulation of fluid-solid interfaces at nanoscale.
    Ould-Kaddour F; Levesque D
    J Chem Phys; 2011 Dec; 135(22):224705. PubMed ID: 22168717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guggenheim's rule and the enthalpy of vaporization of simple and polar fluids, molten salts, and room temperature ionic liquids.
    Weiss VC
    J Phys Chem B; 2010 Jul; 114(28):9183-94. PubMed ID: 20572655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular simulation study of anisotropic wetting.
    Grzelak EM; Shen VK; Errington JR
    Langmuir; 2010 Jun; 26(11):8274-81. PubMed ID: 20218687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulation strategies to compute interfacial and bulk properties of binary fluid mixtures.
    Kumar V; Errington JR
    J Chem Phys; 2013 May; 138(17):174112. PubMed ID: 23656119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computation of interfacial properties via grand canonical transition matrix Monte Carlo simulation.
    Grzelak EM; Errington JR
    J Chem Phys; 2008 Jan; 128(1):014710. PubMed ID: 18190215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing molecular interaction in ionic liquids by low frequency spectroscopy: Coulomb energy, hydrogen bonding and dispersion forces.
    Fumino K; Reimann S; Ludwig R
    Phys Chem Chem Phys; 2014 Oct; 16(40):21903-29. PubMed ID: 24898478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contact angles, pore condensation, and hysteresis: insights from a simple molecular model.
    Monson PA
    Langmuir; 2008 Nov; 24(21):12295-302. PubMed ID: 18834164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dependence of the macroscopic contact angle on the liquid-solid interaction parameters and temperature.
    Berim GO; Ruckenstein E
    J Chem Phys; 2009 May; 130(18):184712. PubMed ID: 19449948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ginzburg criterion for ionic fluids: the effect of Coulomb interactions.
    Patsahan O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022102. PubMed ID: 24032770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculation of interfacial properties via free-energy-based molecular simulation: The influence of system size.
    Grzelak EM; Errington JR
    J Chem Phys; 2010 Jun; 132(22):224702. PubMed ID: 20550411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular simulation study of vapor-liquid critical properties of a simple fluid in attractive slit pores: crossover from 3D to 2D.
    Singh SK; Saha AK; Singh JK
    J Phys Chem B; 2010 Apr; 114(12):4283-92. PubMed ID: 20218567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.