BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 25381575)

  • 21. Alzheimer's disease and amyloid: culprit or coincidence?
    Skaper SD
    Int Rev Neurobiol; 2012; 102():277-316. PubMed ID: 22748834
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fuzhisan Ameliorates the Memory Deficits in Aged SAMP8 Mice via Decreasing Aβ Production and Tau Hyperphosphorylation of the Hippocampus.
    Zhang ZX; Zhao RP; Wang DS; Li YB
    Neurochem Res; 2016 Nov; 41(11):3074-3082. PubMed ID: 27518086
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immunolocalization of Tom1 in relation to protein degradation systems in Alzheimer's disease.
    Makioka K; Yamazaki T; Takatama M; Ikeda M; Murayama S; Okamoto K; Ikeda Y
    J Neurol Sci; 2016 Jun; 365():101-7. PubMed ID: 27206884
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel glycogen synthase kinase-3 inhibitor 2-methyl-5-(3-{4-[(S )-methylsulfinyl]phenyl}-1-benzofuran-5-yl)-1,3,4-oxadiazole decreases tau phosphorylation and ameliorates cognitive deficits in a transgenic model of Alzheimer's disease.
    Onishi T; Iwashita H; Uno Y; Kunitomo J; Saitoh M; Kimura E; Fujita H; Uchiyama N; Kori M; Takizawa M
    J Neurochem; 2011 Dec; 119(6):1330-40. PubMed ID: 21992552
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Up-regulation of phosphorylated/activated p70 S6 kinase and its relationship to neurofibrillary pathology in Alzheimer's disease.
    An WL; Cowburn RF; Li L; Braak H; Alafuzoff I; Iqbal K; Iqbal IG; Winblad B; Pei JJ
    Am J Pathol; 2003 Aug; 163(2):591-607. PubMed ID: 12875979
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Different Populations of Human Locus Ceruleus Neurons Contain Heavy Metals or Hyperphosphorylated Tau: Implications for Amyloid-β and Tau Pathology in Alzheimer's Disease.
    Pamphlett R; Kum Jew S
    J Alzheimers Dis; 2015; 45(2):437-47. PubMed ID: 25547633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Untangling amyloid-β, tau, and metals in Alzheimer's disease.
    Savelieff MG; Lee S; Liu Y; Lim MH
    ACS Chem Biol; 2013 May; 8(5):856-65. PubMed ID: 23506614
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Altered distribution of RhoA in Alzheimer's disease and AbetaPP overexpressing mice.
    Huesa G; Baltrons MA; Gómez-Ramos P; Morán A; García A; Hidalgo J; Francés S; Santpere G; Ferrer I; Galea E
    J Alzheimers Dis; 2010; 19(1):37-56. PubMed ID: 20061625
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pharmacological modulation of GSAP reduces amyloid-β levels and tau phosphorylation in a mouse model of Alzheimer's disease with plaques and tangles.
    Chu J; Lauretti E; Craige CP; Praticò D
    J Alzheimers Dis; 2014; 41(3):729-37. PubMed ID: 24662099
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein aggregation in Alzheimer's disease: Aβ and τ and their potential roles in the pathogenesis of AD.
    Thal DR; Fändrich M
    Acta Neuropathol; 2015 Feb; 129(2):163-5. PubMed ID: 25600324
    [No Abstract]   [Full Text] [Related]  

  • 31. Factors affecting the GABAergic synapse function in Alzheimer's disease: Focus on microRNAs.
    Rivera J; Sharma B; Torres MM; Kumar S
    Ageing Res Rev; 2023 Dec; 92():102123. PubMed ID: 37967653
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regions with abundant neurofibrillary pathology in human brain exhibit a selective reduction in levels of binding-competent tau and accumulation of abnormal tau-isoforms (A68 proteins).
    Bramblett GT; Trojanowski JQ; Lee VM
    Lab Invest; 1992 Feb; 66(2):212-22. PubMed ID: 1735956
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mouse models of Alzheimer's disease: the long and filamentous road.
    Phinney AL; Horne P; Yang J; Janus C; Bergeron C; Westaway D
    Neurol Res; 2003 Sep; 25(6):590-600. PubMed ID: 14503012
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neuropep-1 ameliorates learning and memory deficits in an Alzheimer's disease mouse model, increases brain-derived neurotrophic factor expression in the brain, and causes reduction of amyloid beta plaques.
    Shin MK; Kim HG; Baek SH; Jung WR; Park DI; Park JS; Jo DG; Kim KL
    Neurobiol Aging; 2014 May; 35(5):990-1001. PubMed ID: 24268884
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quercetin reduces eIF2α phosphorylation by GADD34 induction.
    Hayakawa M; Itoh M; Ohta K; Li S; Ueda M; Wang MX; Nishida E; Islam S; Suzuki C; Ohzawa K; Kobori M; Inuzuka T; Nakagawa T
    Neurobiol Aging; 2015 Sep; 36(9):2509-18. PubMed ID: 26070242
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ebselen ameliorates β-amyloid pathology, tau pathology, and cognitive impairment in triple-transgenic Alzheimer's disease mice.
    Xie Y; Tan Y; Zheng Y; Du X; Liu Q
    J Biol Inorg Chem; 2017 Aug; 22(6):851-865. PubMed ID: 28502066
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Brain hypometabolism triggers PHF-like phosphorylation of tau, a major hallmark of Alzheimer's disease pathology.
    Arendt T; Stieler J; Holzer M
    J Neural Transm (Vienna); 2015 Apr; 122(4):531-9. PubMed ID: 25480630
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics.
    Hardy J; Selkoe DJ
    Science; 2002 Jul; 297(5580):353-6. PubMed ID: 12130773
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immunotherapy for Alzheimer's disease.
    Wang W; Fan L; Xu D; Wen Z; Yu R; Ma Q
    Acta Biochim Biophys Sin (Shanghai); 2012 Oct; 44(10):807-14. PubMed ID: 22899646
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tau aggregation and its interplay with amyloid-β.
    Nisbet RM; Polanco JC; Ittner LM; Götz J
    Acta Neuropathol; 2015 Feb; 129(2):207-20. PubMed ID: 25492702
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.