These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 25381887)

  • 21. Carrier transport dynamics in Mn-doped CdSe quantum dot sensitized solar cells.
    Poudyal U; Maloney FS; Sapkota K; Wang W
    Nanotechnology; 2017 Oct; 28(41):415401. PubMed ID: 28723678
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aqueous synthesis of Mn-doped CuInSe
    Abate MA; Dehvari K; Chang JY; Waki K
    Dalton Trans; 2019 Nov; 48(42):16115-16122. PubMed ID: 31620750
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Double-Sided Transparent TiO
    Chen C; Ling L; Li F
    Nanoscale Res Lett; 2017 Dec; 12(1):4. PubMed ID: 28054330
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of self-assembled monolayers on solid-state CdS quantum dot sensitized solar cells.
    Ardalan P; Brennan TP; Lee HB; Bakke JR; Ding IK; McGehee MD; Bent SF
    ACS Nano; 2011 Feb; 5(2):1495-504. PubMed ID: 21299223
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A sulfide/polysulfide-based ionic liquid electrolyte for quantum dot-sensitized solar cells.
    Jovanovski V; González-Pedro V; Giménez S; Azaceta E; Cabañero G; Grande H; Tena-Zaera R; Mora-Seró I; Bisquert J
    J Am Chem Soc; 2011 Dec; 133(50):20156-9. PubMed ID: 22107441
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced photovoltaic performance and time varied controllable growth of a CuS nanoplatelet structured thin film and its application as an efficient counter electrode for quantum dot-sensitized solar cells via a cost-effective chemical bath deposition.
    Thulasi-Varma CV; Rao SS; Kumar CS; Gopi CV; Durga IK; Kim SK; Punnoose D; Kim HJ
    Dalton Trans; 2015 Nov; 44(44):19330-43. PubMed ID: 26497705
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CdSe-CdS quantum dots co-sensitized ZnO hierarchical hybrids for solar cells with enhanced photo-electrical conversion efficiency.
    Yuan Z; Yin L
    Nanoscale; 2014 Nov; 6(21):13135-44. PubMed ID: 25251160
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recombination control in high-performance quantum dot-sensitized solar cells with a novel TiO2/ZnS/CdS/ZnS heterostructure.
    Lee YS; Gopi CV; Venkata-Haritha M; Kim HJ
    Dalton Trans; 2016 Aug; 45(32):12914-23. PubMed ID: 27477125
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impacts of Mn ion in ZnSe passivation on electronic band structure for high efficiency CdS/CdSe quantum dot solar cells.
    Lu S; Peng S; Zhang Z; Deng Y; Qin T; Huang J; Ma F; Hou J; Cao G
    Dalton Trans; 2018 Jul; 47(29):9634-9642. PubMed ID: 29974101
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrocatalytic sulfur electrodes for CdS/CdSe quantum dot-sensitized solar cells.
    Yang Z; Chen CY; Liu CW; Chang HT
    Chem Commun (Camb); 2010 Aug; 46(30):5485-7. PubMed ID: 20593083
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Composite films of metal doped CoS/carbon allotropes; efficient electrocatalyst counter electrodes for high performance quantum dot-sensitized solar cells.
    Khalili SS; Dehghani H; Afrooz M
    J Colloid Interface Sci; 2017 May; 493():32-41. PubMed ID: 28088119
    [TBL] [Abstract][Full Text] [Related]  

  • 32. One-step synthesis of CdS sensitized TiO₂ photoanodes for quantum dot-sensitized solar cells by microwave assisted chemical bath deposition method.
    Zhu G; Pan L; Xu T; Sun Z
    ACS Appl Mater Interfaces; 2011 May; 3(5):1472-8. PubMed ID: 21534627
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced photovoltaic performance of a quantum dot-sensitized solar cell using a Nb-doped TiO2 electrode.
    Jiang L; You T; Deng WQ
    Nanotechnology; 2013 Oct; 24(41):415401. PubMed ID: 24045808
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving the performance of quantum dot-sensitized solar cells by using TiO2 nanosheets with exposed highly reactive facets.
    You T; Jiang L; Han KL; Deng WQ
    Nanotechnology; 2013 Jun; 24(24):245401. PubMed ID: 23680858
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural evolution from the CdSSe alloy to the CdS/CdSe core/shell in Cd(S and Se) composite quantum dots and its impact on the performance of sensitized solar cells.
    Fang J; Lv W; Lei Y; Deng J; Zhang P; Huang W
    Dalton Trans; 2021 Oct; 50(41):14672-14683. PubMed ID: 34585707
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heat-treatment-induced development of the crystalline structure and chemical stoichiometry of a Cu
    Deng J; Zhang P; Li L; Gou Y; Fang J; Lei Y; Song X; Yang Z
    J Colloid Interface Sci; 2020 Nov; 579():805-814. PubMed ID: 32673857
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CdS/CdSe quantum dots and ZnPc dye co-sensitized solar cells with Au nanoparticles/graphene oxide as efficient modified layer.
    Chen C; Cheng Y; Jin J; Dai Q; Song H
    J Colloid Interface Sci; 2016 Oct; 480():49-56. PubMed ID: 27399618
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metal selenides as a new class of electrocatalysts for quantum dot-sensitized solar cells: a tale of Cu(1.8)Se and PbSe.
    Choi HM; Ji IA; Bang JH
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2335-43. PubMed ID: 24490774
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Study of Metal Sulfide as Efficient Counter Electrodes on the Performances of CdS/CdSe/ZnS-co-sensitized Hierarchical TiO
    Buatong N; Tang IM; Pon-On W
    Nanoscale Res Lett; 2017 Dec; 12(1):170. PubMed ID: 28274089
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Front-side illuminated CdS/CdSe quantum dots co-sensitized solar cells based on TiO₂ nanotube arrays.
    Guan XF; Huang SQ; Zhang QX; Shen X; Sun HC; Li DM; Luo YH; Yu RC; Meng QB
    Nanotechnology; 2011 Nov; 22(46):465402. PubMed ID: 22024771
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.