These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 25381992)

  • 21. Rotor subunits adaptations in ATP synthases from photosynthetic organisms.
    Cheuk A; Meier T
    Biochem Soc Trans; 2021 Apr; 49(2):541-550. PubMed ID: 33890627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The stimulating role of subunit F in ATPase activity inside the A1-complex of the Methanosarcina mazei Gö1 A1AO ATP synthase.
    Singh D; Sielaff H; Sundararaman L; Bhushan S; Grüber G
    Biochim Biophys Acta; 2016 Feb; 1857(2):177-187. PubMed ID: 26682760
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dodecamer rotor ring defines H+/ATP ratio for ATP synthesis of prokaryotic V-ATPase from Thermus thermophilus.
    Toei M; Gerle C; Nakano M; Tani K; Gyobu N; Tamakoshi M; Sone N; Yoshida M; Fujiyoshi Y; Mitsuoka K; Yokoyama K
    Proc Natl Acad Sci U S A; 2007 Dec; 104(51):20256-61. PubMed ID: 18077374
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Promiscuous archaeal ATP synthase concurrently coupled to Na+ and H+ translocation.
    Schlegel K; Leone V; Faraldo-Gómez JD; Müller V
    Proc Natl Acad Sci U S A; 2012 Jan; 109(3):947-52. PubMed ID: 22219361
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Na(+)-translocating F(1)F(0) ATP synthase of Propionigenium modestum: mechanochemical insights into the F(0) motor that drives ATP synthesis.
    Kaim G
    Biochim Biophys Acta; 2001 May; 1505(1):94-107. PubMed ID: 11248192
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The transition-like state and Pi entrance into the catalytic a subunit of the biological engine A-ATP synthase.
    Manimekalai MS; Kumar A; Jeyakanthan J; Grüber G
    J Mol Biol; 2011 May; 408(4):736-54. PubMed ID: 21396943
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proton translocation driven by ATP hydrolysis in V-ATPases.
    Kawasaki-Nishi S; Nishi T; Forgac M
    FEBS Lett; 2003 Jun; 545(1):76-85. PubMed ID: 12788495
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Opposite rotation directions in the synthesis and hydrolysis of ATP by the ATP synthase: hints from a subunit asymmetry.
    Nesci S; Trombetti F; Ventrella V; Pagliarani A
    J Membr Biol; 2015 Apr; 248(2):163-9. PubMed ID: 25655107
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure of the rotor of the V-Type Na+-ATPase from Enterococcus hirae.
    Murata T; Yamato I; Kakinuma Y; Leslie AG; Walker JE
    Science; 2005 Apr; 308(5722):654-9. PubMed ID: 15802565
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Osmomechanics of the Propionigenium modestum F(o) motor.
    Dimroth P; Matthey U; Kaim G
    J Bioenerg Biomembr; 2000 Oct; 32(5):449-58. PubMed ID: 15254380
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The a subunit asymmetry dictates the two opposite rotation directions in the synthesis and hydrolysis of ATP by the mitochondrial ATP synthase.
    Nesci S; Trombetti F; Ventrella V; Pagliarani A
    Med Hypotheses; 2015 Jan; 84(1):53-7. PubMed ID: 25497387
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the structure of the proton-binding site in the F(o) rotor of chloroplast ATP synthases.
    Krah A; Pogoryelov D; Meier T; Faraldo-Gómez JD
    J Mol Biol; 2010 Jan; 395(1):20-7. PubMed ID: 19883662
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure of the nucleotide-binding subunit B of the energy producer A1A0 ATP synthase in complex with adenosine diphosphate.
    Kumar A; Manimekalai MS; Grüber G
    Acta Crystallogr D Biol Crystallogr; 2008 Nov; 64(Pt 11):1110-5. PubMed ID: 19020348
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure of the rotor ring of F-Type Na+-ATPase from Ilyobacter tartaricus.
    Meier T; Polzer P; Diederichs K; Welte W; Dimroth P
    Science; 2005 Apr; 308(5722):659-62. PubMed ID: 15860619
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The emerging structure of vacuolar ATPases.
    Drory O; Nelson N
    Physiology (Bethesda); 2006 Oct; 21():317-25. PubMed ID: 16990452
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spectroscopic and crystallographic studies of the mutant R416W give insight into the nucleotide binding traits of subunit B of the A1Ao ATP synthase.
    Kumar A; Manimekalai MS; Balakrishna AM; Hunke C; Weigelt S; Sewald N; Grüber G
    Proteins; 2009 Jun; 75(4):807-19. PubMed ID: 19003877
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cryo-EM of ATP synthases.
    Guo H; Rubinstein JL
    Curr Opin Struct Biol; 2018 Oct; 52():71-79. PubMed ID: 30240940
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystal structure of the archaeal A1Ao ATP synthase subunit B from Methanosarcina mazei Gö1: Implications of nucleotide-binding differences in the major A1Ao subunits A and B.
    Schäfer IB; Bailer SM; Düser MG; Börsch M; Bernal RA; Stock D; Grüber G
    J Mol Biol; 2006 May; 358(3):725-40. PubMed ID: 16563431
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure and mechanism of the ATP synthase membrane motor inferred from quantitative integrative modeling.
    Leone V; Faraldo-Gómez JD
    J Gen Physiol; 2016 Dec; 148(6):441-457. PubMed ID: 27821609
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Membrane embedded location of Na+ or H+ binding sites on the rotor ring of F1F0 ATP synthases.
    von Ballmoos C; Meier T; Dimroth P
    Eur J Biochem; 2002 Nov; 269(22):5581-9. PubMed ID: 12423357
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.