These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 25382060)

  • 1. Microsecond folding and domain motions of a spider silk protein structural switch.
    Ries J; Schwarze S; Johnson CM; Neuweiler H
    J Am Chem Soc; 2014 Dec; 136(49):17136-44. PubMed ID: 25382060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH-dependent dimerization of spider silk N-terminal domain requires relocation of a wedged tryptophan side chain.
    Jaudzems K; Askarieh G; Landreh M; Nordling K; Hedhammar M; Jörnvall H; Rising A; Knight SD; Johansson J
    J Mol Biol; 2012 Sep; 422(4):477-87. PubMed ID: 22706024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly of spider silk proteins is controlled by a pH-sensitive relay.
    Askarieh G; Hedhammar M; Nordling K; Saenz A; Casals C; Rising A; Johansson J; Knight SD
    Nature; 2010 May; 465(7295):236-8. PubMed ID: 20463740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversified Structural Basis of a Conserved Molecular Mechanism for pH-Dependent Dimerization in Spider Silk N-Terminal Domains.
    Otikovs M; Chen G; Nordling K; Landreh M; Meng Q; Jörnvall H; Kronqvist N; Rising A; Johansson J; Jaudzems K
    Chembiochem; 2015 Aug; 16(12):1720-4. PubMed ID: 26033527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-step self-assembly of a spider silk molecular clamp.
    Rat C; Heiby JC; Bunz JP; Neuweiler H
    Nat Commun; 2018 Nov; 9(1):4779. PubMed ID: 30429482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The N-terminal domains of spider silk proteins assemble ultrafast and protected from charge screening.
    Schwarze S; Zwettler FU; Johnson CM; Neuweiler H
    Nat Commun; 2013; 4():2815. PubMed ID: 24240554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conservation of folding and association within a family of spidroin N-terminal domains.
    Heiby JC; Rajab S; Rat C; Johnson CM; Neuweiler H
    Sci Rep; 2017 Dec; 7(1):16789. PubMed ID: 29196631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR assignments of a dynamically perturbed and dimerization inhibited N-terminal domain variant of a spider silk protein from E. australis.
    Goretzki B; Heiby JC; Hacker C; Neuweiler H; Hellmich UA
    Biomol NMR Assign; 2020 Apr; 14(1):67-71. PubMed ID: 31786743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal Structure of the Nephila clavipes Major Ampullate Spidroin 1A N-terminal Domain Reveals Plasticity at the Dimer Interface.
    Atkison JH; Parnham S; Marcotte WR; Olsen SK
    J Biol Chem; 2016 Sep; 291(36):19006-17. PubMed ID: 27445329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methionine in a protein hydrophobic core drives tight interactions required for assembly of spider silk.
    Heiby JC; Goretzki B; Johnson CM; Hellmich UA; Neuweiler H
    Nat Commun; 2019 Sep; 10(1):4378. PubMed ID: 31558722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Domain swap facilitates structural transitions of spider silk protein C-terminal domains.
    Rat C; Heindl C; Neuweiler H
    Protein Sci; 2023 Nov; 32(11):e4783. PubMed ID: 37712205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonance assignment of an engineered amino-terminal domain of a major ampullate spider silk with neutralized charge cluster.
    Schaal D; Bauer J; Schweimer K; Scheibel T; Rösch P; Schwarzinger S
    Biomol NMR Assign; 2016 Apr; 10(1):199-202. PubMed ID: 26892754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Model for the Spider Silk Protein Spidroin-1.
    dos Santos-Pinto JR; Arcuri HA; Priewalder H; Salles HC; Palma MS; Lubec G
    J Proteome Res; 2015 Sep; 14(9):3859-70. PubMed ID: 26211688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequential pH-driven dimerization and stabilization of the N-terminal domain enables rapid spider silk formation.
    Kronqvist N; Otikovs M; Chmyrov V; Chen G; Andersson M; Nordling K; Landreh M; Sarr M; Jörnvall H; Wennmalm S; Widengren J; Meng Q; Rising A; Otzen D; Knight SD; Jaudzems K; Johansson J
    Nat Commun; 2014; 5():3254. PubMed ID: 24510122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spidroin N-terminal domain promotes a pH-dependent association of silk proteins during self-assembly.
    Gaines WA; Sehorn MG; Marcotte WR
    J Biol Chem; 2010 Dec; 285(52):40745-53. PubMed ID: 20959449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural properties of recombinant nonrepetitive and repetitive parts of major ampullate spidroin 1 from Euprosthenops australis: implications for fiber formation.
    Hedhammar M; Rising A; Grip S; Martinez AS; Nordling K; Casals C; Stark M; Johansson J
    Biochemistry; 2008 Mar; 47(11):3407-17. PubMed ID: 18293938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spider silk protein refolding is controlled by changing pH.
    Dicko C; Vollrath F; Kenney JM
    Biomacromolecules; 2004; 5(3):704-10. PubMed ID: 15132650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the Impact of Acidification on Spider Silk Assembly Kinetics.
    Xu D; Guo C; Holland GP
    Biomacromolecules; 2015 Jul; 16(7):2072-9. PubMed ID: 26030517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-terminal nonrepetitive domain common to dragline, flagelliform, and cylindriform spider silk proteins.
    Rising A; Hjälm G; Engström W; Johansson J
    Biomacromolecules; 2006 Nov; 7(11):3120-4. PubMed ID: 17096540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A pH-dependent dimer lock in spider silk protein.
    Landreh M; Askarieh G; Nordling K; Hedhammar M; Rising A; Casals C; Astorga-Wells J; Alvelius G; Knight SD; Johansson J; Jörnvall H; Bergman T
    J Mol Biol; 2010 Nov; 404(2):328-36. PubMed ID: 20887730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.