BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 25382411)

  • 1. Highly accelerated inverse electron-demand cycloaddition of electron-deficient azides with aliphatic cyclooctynes.
    Dommerholt J; van Rooijen O; Borrmann A; Guerra CF; Bickelhaupt FM; van Delft FL
    Nat Commun; 2014 Nov; 5():5378. PubMed ID: 25382411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strain-promoted azide-alkyne cycloaddition with ruthenium(II)-azido complexes.
    Cruchter T; Harms K; Meggers E
    Chemistry; 2013 Dec; 19(49):16682-9. PubMed ID: 24173767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemoselectivity of Tertiary Azides in Strain-Promoted Alkyne-Azide Cycloadditions.
    Svatunek D; Houszka N; Hamlin TA; Bickelhaupt FM; Mikula H
    Chemistry; 2019 Jan; 25(3):754-758. PubMed ID: 30347481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile Quenching and Spatial Patterning of Cylooctynes via Strain-Promoted Alkyne-Azide Cycloaddition of Inorganic Azides.
    Bjerknes M; Cheng H; McNitt CD; Popik VV
    Bioconjug Chem; 2017 May; 28(5):1560-1565. PubMed ID: 28437092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain-Promoted 1,3-Dipolar Cycloaddition of Cycloalkynes and Organic Azides.
    Dommerholt J; Rutjes FPJT; van Delft FL
    Top Curr Chem (Cham); 2016 Apr; 374(2):16. PubMed ID: 27573141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of DIBAC analogues with excellent SPAAC rate constants.
    Debets MF; Prins JS; Merkx D; van Berkel SS; van Delft FL; van Hest JC; Rutjes FP
    Org Biomol Chem; 2014 Jul; 12(27):5031-7. PubMed ID: 24899166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain-promoted oxidation-controlled cyclooctyne-1,2-quinone cycloaddition (SPOCQ) for fast and activatable protein conjugation.
    Borrmann A; Fatunsin O; Dommerholt J; Jonker AM; Löwik DW; van Hest JC; van Delft FL
    Bioconjug Chem; 2015 Feb; 26(2):257-61. PubMed ID: 25521043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dibenzocyclooctynes: Effect of Aryl Substitution on Their Reactivity toward Strain-Promoted Alkyne-Azide Cycloaddition.
    Terzic V; Pousse G; Méallet-Renault R; Grellier P; Dubois J
    J Org Chem; 2019 Jul; 84(13):8542-8551. PubMed ID: 31199143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Electron-Deficient Pyridinium-Nitrones for Rapid and Tunable Inverse-Electron-Demand Strain-Promoted Alkyne-Nitrone Cycloaddition.
    Gunawardene PN; Luo W; Polgar AM; Corrigan JF; Workentin MS
    Org Lett; 2019 Jul; 21(14):5547-5551. PubMed ID: 31251633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition states of strain-promoted metal-free click chemistry: 1,3-dipolar cycloadditions of phenyl azide and cyclooctynes.
    Ess DH; Jones GO; Houk KN
    Org Lett; 2008 Apr; 10(8):1633-6. PubMed ID: 18363405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preventing thiol-yne addition improves the specificity of strain-promoted azide-alkyne cycloaddition.
    van Geel R; Pruijn GJ; van Delft FL; Boelens WC
    Bioconjug Chem; 2012 Mar; 23(3):392-8. PubMed ID: 22372991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast RNA conjugations on solid phase by strain-promoted cycloadditions.
    Singh I; Freeman C; Madder A; Vyle JS; Heaney F
    Org Biomol Chem; 2012 Sep; 10(33):6633-9. PubMed ID: 22751955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of Strain-Promoted Azide-Alkyne Cycloadditions in Aqueous Solutions by Capillary Electrophoresis.
    Steflova J; Storch G; Wiesner S; Stockinger S; Berg R; Trapp O
    J Org Chem; 2018 Jan; 83(2):604-613. PubMed ID: 29278503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile strategy for protein conjugation with chitosan-poly(ethylene glycol) hybrid microparticle platforms via strain-promoted alkyne-azide cycloaddition (SPAAC) reaction.
    Jung S; Yi H
    Biomacromolecules; 2013 Nov; 14(11):3892-902. PubMed ID: 24074168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple method for enhancing the bioorthogonality of cyclooctyne reagent.
    Tian H; Sakmar TP; Huber T
    Chem Commun (Camb); 2016 Apr; 52(31):5451-4. PubMed ID: 27009873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How cycloalkane fusion enhances the cycloaddition reactivity of dibenzocyclooctynes.
    Svatunek D; Murnauer A; Tan Z; Houk KN; Lang K
    Chem Sci; 2024 Feb; 15(6):2229-2235. PubMed ID: 38332832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain-promoted azide-alkyne cycloadditions of benzocyclononynes.
    Tummatorn J; Batsomboon P; Clark RJ; Alabugin IV; Dudley GB
    J Org Chem; 2012 Mar; 77(5):2093-7. PubMed ID: 22316100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid and Complete Surface Modification with Strain-Promoted Oxidation-Controlled Cyclooctyne-1,2-Quinone Cycloaddition (SPOCQ).
    Sen R; Escorihuela J; van Delft F; Zuilhof H
    Angew Chem Int Ed Engl; 2017 Mar; 56(12):3299-3303. PubMed ID: 28198134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper-Free Click Reaction Sequence: A Chemoselective Layer-by-Layer Approach.
    Meinecke J; Koert U
    Org Lett; 2019 Sep; 21(18):7609-7612. PubMed ID: 31487194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-specific one-pot dual labeling of DNA by orthogonal cycloaddition chemistry.
    Schoch J; Staudt M; Samanta A; Wiessler M; Jäschke A
    Bioconjug Chem; 2012 Jul; 23(7):1382-6. PubMed ID: 22709568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.