These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Distribution of rhodolith beds and their functional biodiversity characterisation using ROV images in the western Mediterranean Sea. Illa-López L; Cabrito A; de Juan S; Maynou F; Demestre M Sci Total Environ; 2023 Dec; 905():167270. PubMed ID: 37741380 [TBL] [Abstract][Full Text] [Related]
3. Unveiling privacy: advances in microtomography of coralline algae. Torrano-Silva BN; Ferreira SG; Oliveira MC Micron; 2015 May; 72():34-8. PubMed ID: 25777060 [TBL] [Abstract][Full Text] [Related]
5. Physiologic and metagenomic attributes of the rhodoliths forming the largest CaCO3 bed in the South Atlantic Ocean. Cavalcanti GS; Gregoracci GB; dos Santos EO; Silveira CB; Meirelles PM; Longo L; Gotoh K; Nakamura S; Iida T; Sawabe T; Rezende CE; Francini-Filho RB; Moura RL; Amado-Filho GM; Thompson FL ISME J; 2014 Jan; 8(1):52-62. PubMed ID: 23985749 [TBL] [Abstract][Full Text] [Related]
6. Rhodolith density influences sedimentary organic matter quantity and biochemical composition, and nematode diversity. Martins Neto J; Bernardino AF; Netto SA Mar Environ Res; 2021 Oct; 171():105470. PubMed ID: 34492367 [TBL] [Abstract][Full Text] [Related]
7. Variation in Photosynthetic Performance Relative to Thallus Microhabitat Heterogeneity in Lithothamnion australe (Rhodophyta, Corallinales) Rhodoliths. Kim JH; Steller DL; Edwards MS J Phycol; 2021 Feb; 57(1):234-244. PubMed ID: 33020935 [TBL] [Abstract][Full Text] [Related]
8. Rhodoliths holobionts in a changing ocean: host-microbes interactions mediate coralline algae resilience under ocean acidification. Cavalcanti GS; Shukla P; Morris M; Ribeiro B; Foley M; Doane MP; Thompson CC; Edwards MS; Dinsdale EA; Thompson FL BMC Genomics; 2018 Sep; 19(1):701. PubMed ID: 30249182 [TBL] [Abstract][Full Text] [Related]
9. Reconstruction of the Maërl habitat to better understand its ecological integrity. Demestre M; Soto S; Durán R; Del Arco JAG; Cabrito A; Illa-Lopez L; Maynou F; Sánchez P; García-de-Vinuesa A; Emelianov M Sci Total Environ; 2024 Feb; 912():168752. PubMed ID: 37992831 [TBL] [Abstract][Full Text] [Related]
10. In situ decrease in rhodolith growth associated with Arctic climate change. Teichert S; Reddin CJ; Wisshak M Glob Chang Biol; 2024 May; 30(5):e17300. PubMed ID: 38738563 [TBL] [Abstract][Full Text] [Related]
11. Environmental drivers of rhodolith beds and epiphytes community along the South Western Atlantic coast. Carvalho VF; Assis J; Serrão EA; Nunes JM; Anderson AB; Batista MB; Barufi JB; Silva J; Pereira SMB; Horta PA Mar Environ Res; 2020 Feb; 154():104827. PubMed ID: 31780097 [TBL] [Abstract][Full Text] [Related]
12. Quantifying maerl (rhodolith) habitat complexity along an environmental gradient at regional scale in the Northeast Atlantic. Jardim VL; Gauthier O; Toumi C; Grall J Mar Environ Res; 2022 Nov; 181():105768. PubMed ID: 36240648 [TBL] [Abstract][Full Text] [Related]
13. Microplastic contamination of the drilling bivalve Hiatella arctica in Arctic rhodolith beds. Teichert S; Löder MGJ; Pyko I; Mordek M; Schulbert C; Wisshak M; Laforsch C Sci Rep; 2021 Jul; 11(1):14574. PubMed ID: 34272428 [TBL] [Abstract][Full Text] [Related]
14. 'Ten Years After'-a long-term settlement and bioerosion experiment in an Arctic rhodolith bed (Mosselbukta, Svalbard). Wisshak M; Meyer N; Kuklinski P; Rüggeberg A; Freiwald A Geobiology; 2022 Jan; 20(1):112-136. PubMed ID: 34523213 [TBL] [Abstract][Full Text] [Related]
15. Positive species interactions structure rhodolith bed communities at a global scale. Bulleri F; Schubert N; Hall-Spencer JM; Basso D; Burdett HL; Francini-Filho RB; Grall J; Horta PA; Kamenos NA; Martin S; Nannini M; Neves P; Olivé I; Peña V; Ragazzola F; Ribeiro C; Rinde E; Sissini M; Tuya F; Silva J Biol Rev Camb Philos Soc; 2024 Sep; ():. PubMed ID: 39300809 [TBL] [Abstract][Full Text] [Related]
16. Characterization of rhodolith beds-related backscatter facies from the western Pontine Archipelago (Mediterranean Sea). Sañé E; Ingrassia M; Chiocci FL; Argenti L; Martorelli E Mar Environ Res; 2021 Jul; 169():105339. PubMed ID: 33932846 [TBL] [Abstract][Full Text] [Related]
17. Interplay of microbial communities with mineral environments in coralline algae. Valdespino-Castillo PM; Bautista-García A; Favoretto F; Merino-Ibarra M; Alcántara-Hernández RJ; Pi-Puig T; Castillo FS; Espinosa-Matías S; Holman HY; Blanco-Jarvio A Sci Total Environ; 2021 Feb; 757():143877. PubMed ID: 33316514 [TBL] [Abstract][Full Text] [Related]
18. Proxies to detect hotspots of invertebrate biodiversity on rhodolith beds across the Southwestern Atlantic. Lino JB; Laurino IRA; Longo PADS; Santos CSG; Motta FDS; Francini-Filho RB; Pereira-Filho GH Mar Environ Res; 2024 Apr; 196():106431. PubMed ID: 38442590 [TBL] [Abstract][Full Text] [Related]
19. Growth Resilience of Subarctic Rhodoliths (Lithothamnion glaciale, Rhodophyta) to Chronic Low Sea Temperature and irradiance. Arnold CL; Bélanger D; Gagnon P J Phycol; 2022 Apr; 58(2):251-266. PubMed ID: 34902157 [TBL] [Abstract][Full Text] [Related]