These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 25382667)

  • 1. In situ transmission electron microscopy of ionic conductivity and reaction mechanisms in ultrathin solid oxide fuel cells.
    Tavabi AH; Arai S; Muto S; Tanji T; Dunin-Borkowski RE
    Microsc Microanal; 2014 Dec; 20(6):1817-25. PubMed ID: 25382667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strongly correlated perovskite fuel cells.
    Zhou Y; Guan X; Zhou H; Ramadoss K; Adam S; Liu H; Lee S; Shi J; Tsuchiya M; Fong DD; Ramanathan S
    Nature; 2016 Jun; 534(7606):231-4. PubMed ID: 27279218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Applications of Environmental Cell Transmission Electron Microscope for In Situ Observations of Gas-Solid Reactions.
    Sharma R
    Microsc Microanal; 2001 Nov; 7(6):494-506. PubMed ID: 12597794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel n-i CeO
    Zhang Y; Zhu D; Jia X; Liu J; Li X; Ouyang Y; Li Z; Gao X; Zhu C
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):2419-2428. PubMed ID: 36583856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the ionic conductivity maximum in doped ceria: trapping and blocking.
    Koettgen J; Grieshammer S; Hein P; Grope BOH; Nakayama M; Martin M
    Phys Chem Chem Phys; 2018 May; 20(21):14291-14321. PubMed ID: 29479588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-performance cathode for the next generation of solid-oxide fuel cells.
    Shao Z; Haile SM
    Nature; 2004 Sep; 431(7005):170-3. PubMed ID: 15356627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery and characterization of novel oxide anodes for solid oxide fuel cells.
    Tao S; Irvine JT
    Chem Rec; 2004; 4(2):83-95. PubMed ID: 15073876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ optical studies of solid-oxide fuel cells.
    Pomfret MB; Owrutsky JC; Walker RA
    Annu Rev Anal Chem (Palo Alto Calif); 2010; 3():151-74. PubMed ID: 20636038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Doped CeO2-LaFeO3 composite oxide as an active anode for direct hydrocarbon-type solid oxide fuel cells.
    Shin TH; Ida S; Ishihara T
    J Am Chem Soc; 2011 Dec; 133(48):19399-407. PubMed ID: 22011010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of ionic conductivity in doped ceria.
    Andersson DA; Simak SI; Skorodumova NV; Abrikosov IA; Johansson B
    Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3518-21. PubMed ID: 16478802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Temperature Chemistry in Solid Oxide Fuel Cells: In Situ Optical Studies.
    Pomfret MB; Walker RA; Owrutsky JC
    J Phys Chem Lett; 2012 Oct; 3(20):3053-64. PubMed ID: 26292249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen transport in perovskite-type solid oxide fuel cell materials: insights from quantum mechanics.
    Muñoz-García AB; Ritzmann AM; Pavone M; Keith JA; Carter EA
    Acc Chem Res; 2014 Nov; 47(11):3340-8. PubMed ID: 24972154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of proton-conduction in electrolyte on electric efficiency of multi-stage solid oxide fuel cells.
    Matsuzaki Y; Tachikawa Y; Somekawa T; Hatae T; Matsumoto H; Taniguchi S; Sasaki K
    Sci Rep; 2015 Jul; 5():12640. PubMed ID: 26218470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural Mineral-Based Solid Oxide Fuel Cell with Heterogeneous Nanocomposite Derived from Hematite and Rare-Earth Minerals.
    Xia C; Cai Y; Ma Y; Wang B; Zhang W; Karlsson M; Wu Y; Zhu B
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20748-55. PubMed ID: 27483426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy-filtered environmental transmission electron microscopy for the assessment of solid-gas reactions at elevated temperature: NiO/YSZ-H2 as a case study.
    Jeangros Q; Hansen TW; Wagner JB; Dunin-Borkowski RE; Hébert C; Van Herle J; Hessler-Wyser A
    Ultramicroscopy; 2016 Oct; 169():11-21. PubMed ID: 27421078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced Fuel Cell Based on New Nanocrystalline Structure Gd
    Chen G; Sun W; Luo Y; He Y; Zhang X; Zhu B; Li W; Liu X; Ding Y; Li Y; Geng S; Yu K
    ACS Appl Mater Interfaces; 2019 Mar; 11(11):10642-10650. PubMed ID: 30794370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of advanced electron holographic techniques and application to industrial materials and devices.
    Yamamoto K; Hirayama T; Tanji T
    Microscopy (Oxf); 2013 Jun; 62 Suppl 1():S29-41. PubMed ID: 23536696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroelectrochemical cell for in situ studies of solid oxide fuel cells.
    Hagen A; Traulsen ML; Kiebach WR; Johansen BS
    J Synchrotron Radiat; 2012 May; 19(Pt 3):400-7. PubMed ID: 22514176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural characterization combined with the first principles simulations of barium/strontium cobaltite/ferrite as promising material for solid oxide fuel cells cathodes and high-temperature oxygen permeation membranes.
    Gangopadhayay S; Inerbaev T; Masunov AE; Altilio D; Orlovskaya N
    ACS Appl Mater Interfaces; 2009 Jul; 1(7):1512-9. PubMed ID: 20355954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of Nanocomposite Solid Oxide Fuel Cell Cathodes by Preferential Clustering of Cations from a Single Polymeric Precursor.
    Eksioglu A; Colakerol Arslan L; Sezen M; Ow-Yang C; Buyukaksoy A
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):47904-47916. PubMed ID: 31790191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.