These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25382809)

  • 21. Colorless chlorophyll catabolites in senescent florets of broccoli (Brassica oleracea var. italica).
    Roiser MH; Müller T; Kräutler B
    J Agric Food Chem; 2015 Feb; 63(5):1385-92. PubMed ID: 25620234
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pathogen-Induced Leaf Chlorosis: Products of Chlorophyll Breakdown Found in Degreened Leaves of Phytoplasma-Infected Apple (Malus × domestica Borkh.) and Apricot (Prunus armeniaca L.) Trees Relate to the Pheophorbide a Oxygenase/Phyllobilin Pathway.
    Mittelberger C; Yalcinkaya H; Pichler C; Gasser J; Scherzer G; Erhart T; Schumacher S; Holzner B; Janik K; Robatscher P; Müller T; Kräutler B; Oberhuber M
    J Agric Food Chem; 2017 Apr; 65(13):2651-2660. PubMed ID: 28267924
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structures of chlorophyll catabolites in bananas (Musa acuminata) reveal a split path of chlorophyll breakdown in a ripening fruit.
    Moser S; Müller T; Holzinger A; Lütz C; Kräutler B
    Chemistry; 2012 Aug; 18(35):10873-85. PubMed ID: 22807397
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chlorophyll breakdown in senescent Arabidopsis leaves. Characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction.
    Pruzinská A; Tanner G; Aubry S; Anders I; Moser S; Müller T; Ongania KH; Kräutler B; Youn JY; Liljegren SJ; Hörtensteiner S
    Plant Physiol; 2005 Sep; 139(1):52-63. PubMed ID: 16113212
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Non-fluorescent and yellow chlorophyll catabolites in Japanese plum fruits (Prunus salicina, Lindl.).
    Roca M; Ríos JJ; Chahuaris A; Pérez-Gálvez A
    Food Res Int; 2017 Oct; 100(Pt 3):332-338. PubMed ID: 28964356
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cytochrome P450 CYP89A9 is involved in the formation of major chlorophyll catabolites during leaf senescence in Arabidopsis.
    Christ B; Süssenbacher I; Moser S; Bichsel N; Egert A; Müller T; Kräutler B; Hörtensteiner S
    Plant Cell; 2013 May; 25(5):1868-80. PubMed ID: 23723324
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chlorophyll Catabolites in Fall Leaves of the Wych Elm Tree Present a Novel Glycosylation Motif.
    Scherl M; Müller T; Kreutz CR; Huber RG; Zass E; Liedl KR; Kräutler B
    Chemistry; 2016 Jul; 22(28):9498-503. PubMed ID: 27128523
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How plants dispose of chlorophyll catabolites. Directly energized uptake of tetrapyrrolic breakdown products into isolated vacuoles.
    Hinder B; Schellenberg M; Rodoni S; Ginsburg S; Vogt E; Martinoia E; Matile P; Hörtensteiner S
    J Biol Chem; 1996 Nov; 271(44):27233-6. PubMed ID: 8910294
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chlorophyll Breakdown in a Fern-Discovery of Phyllobilin Isomers with a Rearranged Carbon Skeleton.
    Erhart T; Vergeiner S; Kreutz C; Kräutler B; Müller T
    Angew Chem Int Ed Engl; 2018 Nov; 57(45):14937-14941. PubMed ID: 30144281
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phyllobilins from Senescence-Associated Chlorophyll Breakdown in the Leaves of Basil (
    Moser S; Erhart T; Neuhauser S; Kräutler B
    J Agric Food Chem; 2020 Jul; 68(27):7132-7142. PubMed ID: 32520552
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Re-opening the stage for Echinacea research - Characterization of phylloxanthobilins as a novel anti-oxidative compound class in Echinacea purpurea.
    Karg CA; Wang P; Vollmar AM; Moser S
    Phytomedicine; 2019 Jul; 60():152969. PubMed ID: 31153733
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chlorophyll and Chlorophyll Catabolite Analysis by HPLC.
    Das A; Guyer L; Hörtensteiner S
    Methods Mol Biol; 2018; 1744():223-235. PubMed ID: 29392669
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonfluorescent chlorophyll catabolites in loquat fruits (Eriobotrya japonica Lindl.).
    Ríos JJ; Roca M; Pérez-Gálvez A
    J Agric Food Chem; 2014 Oct; 62(43):10576-84. PubMed ID: 25293494
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Biochemical and physiological aspects of chlorophyll breakdown].
    Zalewska M; Tukaj Z
    Postepy Biochem; 2019 Jun; 65(2):128-134. PubMed ID: 31642651
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel Types of Phyllobilins in a Fern - Molecular Reporters of the Evolution of Chlorophyll Breakdown in the Paleozoic Era.
    Erhart T; Nadegger C; Vergeiner S; Kreutz C; Müller T; Kräutler B
    Chemistry; 2024 Jun; 30(35):e202401288. PubMed ID: 38634697
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photooxidative cleavage of zinc 20-substituted chlorophyll derivatives: conformationally P-helix-favored formation of regioselectively 19-20 opened linear tetrapyrroles.
    Tamiaki H; Okamoto Y; Mikata Y; Shoji S
    Photochem Photobiol Sci; 2012 Jun; 11(6):898-907. PubMed ID: 22139399
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Breakdown of Chlorophyll in Higher Plants--Phyllobilins as Abundant, Yet Hardly Visible Signs of Ripening, Senescence, and Cell Death.
    Kräutler B
    Angew Chem Int Ed Engl; 2016 Apr; 55(16):4882-907. PubMed ID: 26919572
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The biochemistry and molecular biology of chlorophyll breakdown.
    Kuai B; Chen J; Hörtensteiner S
    J Exp Bot; 2018 Feb; 69(4):751-767. PubMed ID: 28992212
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chlorophyll degradation and formation of colorless chlorophyll derivatives during soybean (Glycine max L. Merill) seed maturation.
    Borrmann D; de Andrade JC; Lanfer-Marquez UM
    J Agric Food Chem; 2009 Mar; 57(5):2030-4. PubMed ID: 19199443
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cryptic chlorophyll breakdown in non-senescent green Arabidopsis thaliana leaves.
    Süssenbacher I; Menghini D; Scherzer G; Salinger K; Erhart T; Moser S; Vergeiner C; Hörtensteiner S; Kräutler B
    Photosynth Res; 2019 Oct; 142(1):69-85. PubMed ID: 31172355
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.