BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 25382815)

  • 1. Carrier thermalization dynamics in single zincblende and wurtzite InP Nanowires.
    Wang Y; Jackson HE; Smith LM; Burgess T; Paiman S; Gao Q; Tan HH; Jagadish C
    Nano Lett; 2014 Dec; 14(12):7153-60. PubMed ID: 25382815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hole and Electron Effective Masses in Single InP Nanowires with a Wurtzite-Zincblende Homojunction.
    Tedeschi D; Fonseka HA; Blundo E; Granados Del Águila A; Guo Y; Tan HH; Christianen PCM; Jagadish C; Polimeni A; De Luca M
    ACS Nano; 2020 Sep; 14(9):11613-11622. PubMed ID: 32865391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires.
    Zilli A; De Luca M; Tedeschi D; Fonseka HA; Miriametro A; Tan HH; Jagadish C; Capizzi M; Polimeni A
    ACS Nano; 2015 Apr; 9(4):4277-87. PubMed ID: 25801648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carrier dynamics and quantum confinement in type II ZB-WZ InP nanowire homostructures.
    Pemasiri K; Montazeri M; Gass R; Smith LM; Jackson HE; Yarrison-Rice J; Paiman S; Gao Q; Tan HH; Jagadish C; Zhang X; Zou J
    Nano Lett; 2009 Feb; 9(2):648-54. PubMed ID: 19170615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High optical quality single crystal phase wurtzite and zincblende InP nanowires.
    Vu TT; Zehender T; Verheijen MA; Plissard SR; Immink GW; Haverkort JE; Bakkers EP
    Nanotechnology; 2013 Mar; 24(11):115705. PubMed ID: 23455417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-Lived Hot Carriers in III-V Nanowires.
    Tedeschi D; De Luca M; Fonseka HA; Gao Q; Mura F; Tan HH; Rubini S; Martelli F; Jagadish C; Capizzi M; Polimeni A
    Nano Lett; 2016 May; 16(5):3085-93. PubMed ID: 27104870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magneto-optical properties of wurtzite-phase InP nanowires.
    De Luca M; Polimeni A; Fonseka HA; Meaney AJ; Christianen PC; Maan JC; Paiman S; Tan HH; Mura F; Jagadish C; Capizzi M
    Nano Lett; 2014 Aug; 14(8):4250-6. PubMed ID: 24972081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomistic investigations on the mechanical properties and fracture mechanisms of indium phosphide nanowires.
    Pial TH; Rakib T; Mojumder S; Motalab M; Akanda MAS
    Phys Chem Chem Phys; 2018 Mar; 20(13):8647-8657. PubMed ID: 29536996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Addressing the Fundamental Electronic Properties of Wurtzite GaAs Nanowires by High-Field Magneto-Photoluminescence Spectroscopy.
    De Luca M; Rubini S; Felici M; Meaney A; Christianen PCM; Martelli F; Polimeni A
    Nano Lett; 2017 Nov; 17(11):6540-6547. PubMed ID: 29035544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polychromatic emission in a wide energy range from InP-InAs-InP multi-shell nanowires.
    Battiato S; Wu S; Zannier V; Bertoni A; Goldoni G; Li A; Xiao S; Han XD; Beltram F; Sorba L; Xu X; Rossella F
    Nanotechnology; 2019 May; 30(19):194004. PubMed ID: 30634180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wide InP nanowires with wurtzite/zincblende superlattice segments are type-II whereas narrower nanowires become type-I: an atomistic pseudopotential calculation.
    Zhang L; Luo JW; Zunger A; Akopian N; Zwiller V; Harmand JC
    Nano Lett; 2010 Oct; 10(10):4055-60. PubMed ID: 20809611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. InP and InAs nanowires hetero- and homojunctions: energetic stability and electronic properties.
    Dionízio Moreira M; Venezuela P; Miwa RH
    Nanotechnology; 2010 Jul; 21(28):285204. PubMed ID: 20562482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polytypism in GaAs/GaNAs core-shell nanowires.
    Yukimune M; Fujiwara R; Mita T; Ishikawa F
    Nanotechnology; 2020 Dec; 31(50):505608. PubMed ID: 32937605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct observation of charge-carrier heating at WZ-ZB InP nanowire heterojunctions.
    Yong CK; Wong-Leung J; Joyce HJ; Lloyd-Hughes J; Gao Q; Tan HH; Jagadish C; Johnston MB; Herz LM
    Nano Lett; 2013 Sep; 13(9):4280-7. PubMed ID: 23919626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Value and Anisotropy of the Electron and Hole Mass in Pure Wurtzite InP Nanowires.
    Tedeschi D; De Luca M; Granados Del Águila A; Gao Q; Ambrosio G; Capizzi M; Tan HH; Christianen PC; Jagadish C; Polimeni A
    Nano Lett; 2016 Oct; 16(10):6213-6221. PubMed ID: 27676609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal phase engineering of self-catalyzed GaAs nanowires using a RHEED diagram.
    Dursap T; Vettori M; Danescu A; Botella C; Regreny P; Patriarche G; Gendry M; Penuelas J
    Nanoscale Adv; 2020 May; 2(5):2127-2134. PubMed ID: 36132505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient methodology to correlate structural with optical properties of GaAs nanowires based on scanning electron microscopy.
    Lin WH; Jahn U; Küpers H; Luna E; Lewis RB; Geelhaar L; Brandt O
    Nanotechnology; 2017 Oct; 28(41):415703. PubMed ID: 28767046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal Phase Quantum Dots in the Ultrathin Core of GaAs-AlGaAs Core-Shell Nanowires.
    Loitsch B; Winnerl J; Grimaldi G; Wierzbowski J; Rudolph D; Morkötter S; Döblinger M; Abstreiter G; Koblmüller G; Finley JJ
    Nano Lett; 2015 Nov; 15(11):7544-51. PubMed ID: 26455732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. InP nanowire light-emitting diodes with different pn-junction structures.
    Kimura S; Gamo H; Katsumi Y; Motohisa J; Tomioka K
    Nanotechnology; 2022 May; 33(30):. PubMed ID: 35395650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring Crystal Phase Switching in GaP Nanowires.
    Assali S; Gagliano L; Oliveira DS; Verheijen MA; Plissard SR; Feiner LF; Bakkers EP
    Nano Lett; 2015 Dec; 15(12):8062-9. PubMed ID: 26539748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.