These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 25383168)

  • 1. Dynamic cell culture on calcium phosphate microcarriers for bone tissue engineering applications.
    Perez RA; Riccardi K; Altankov G; Ginebra MP
    J Tissue Eng; 2014; 5():2041731414543965. PubMed ID: 25383168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic cell culture on porous biopolymer microcarriers in a spinner flask for bone tissue engineering: a feasibility study.
    Jin GZ; Park JH; Seo SJ; Kim HW
    Biotechnol Lett; 2014 Jul; 36(7):1539-48. PubMed ID: 24652549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A modular approach to the engineering of a centimeter-sized bone tissue construct with human amniotic mesenchymal stem cells-laden microcarriers.
    Chen M; Wang X; Ye Z; Zhang Y; Zhou Y; Tan WS
    Biomaterials; 2011 Oct; 32(30):7532-42. PubMed ID: 21774980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical attributes of human early mesenchymal stromal cell-laden microcarrier constructs for improved chondrogenic differentiation.
    Lin YM; Lee J; Lim JFY; Choolani M; Chan JKY; Reuveny S; Oh SKW
    Stem Cell Res Ther; 2017 May; 8(1):93. PubMed ID: 28482913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adult human articular chondrocytes in a microcarrier-based culture system: expansion and redifferentiation.
    Schrobback K; Klein TJ; Schuetz M; Upton Z; Leavesley DI; Malda J
    J Orthop Res; 2011 Apr; 29(4):539-46. PubMed ID: 20957734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the effects of matrix-derived microcarrier composition on human adipose-derived stromal cells cultured dynamically within spinner flask bioreactors.
    Kornmuller A; Cooper TT; Jani A; Lajoie GA; Flynn LE
    J Biomed Mater Res A; 2023 Mar; 111(3):415-434. PubMed ID: 36210786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pure gelatin microcarriers: synthesis and use in cell attachment and growth of fibroblast and endothelial cells.
    Wissemann KW; Jacobson BS
    In Vitro Cell Dev Biol; 1985 Jul; 21(7):391-401. PubMed ID: 2993223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silk fibroin/gelatin microcarriers as scaffolds for bone tissue engineering.
    Luetchford KA; Chaudhuri JB; De Bank PA
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110116. PubMed ID: 31753329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expansion of human nasal chondrocytes on macroporous microcarriers enhances redifferentiation.
    Malda J; Kreijveld E; Temenoff JS; van Blitterswijk CA; Riesle J
    Biomaterials; 2003 Dec; 24(28):5153-61. PubMed ID: 14568432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decellularized adipose tissue microcarriers as a dynamic culture platform for human adipose-derived stem/stromal cell expansion.
    Yu C; Kornmuller A; Brown C; Hoare T; Flynn LE
    Biomaterials; 2017 Mar; 120():66-80. PubMed ID: 28038353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A scalable approach to obtain mesenchymal stem cells with osteogenic potency on apatite microcarriers.
    Feng J; Chong M; Chan J; Zhang Z; Teoh SH; Thian ES
    J Biomater Appl; 2014 Jul; 29(1):93-103. PubMed ID: 24327350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium-alginate gel bead cross-linked with gelatin as microcarrier for anchorage-dependent cell culture.
    Kwon YJ; Peng CA
    Biotechniques; 2002 Jul; 33(1):212-4, 216, 218. PubMed ID: 12139248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers.
    Levato R; Visser J; Planell JA; Engel E; Malda J; Mateos-Timoneda MA
    Biofabrication; 2014 Sep; 6(3):035020. PubMed ID: 25048797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and culture of hepatocyte on gelatin microcarriers.
    Tao X; Shaolin L; Yaoting Y
    J Biomed Mater Res A; 2003 May; 65(2):306-10. PubMed ID: 12734826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expansion in microcarrier-spinner cultures improves the chondrogenic potential of human early mesenchymal stromal cells.
    Lin YM; Lim JF; Lee J; Choolani M; Chan JK; Reuveny S; Oh SK
    Cytotherapy; 2016 Jun; 18(6):740-53. PubMed ID: 27173750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and characterization of tissue-specific extracellular matrix-derived microcarriers.
    Turner AE; Flynn LE
    Tissue Eng Part C Methods; 2012 Mar; 18(3):186-97. PubMed ID: 21981618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative surfaces for microcarrier culture of animal cells.
    Gebb C; Clark JM; Hirtenstein MD; Lindgren G; Lindskog U; Lundgren B; Vretblad P
    Dev Biol Stand; 1981; 50():93-102. PubMed ID: 7341301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Growth and metabolism of human skin fibroblasts cultured on microcarriers].
    Deng MA; Zhou Y; Hua P; Tan WS
    Sheng Wu Gong Cheng Xue Bao; 2001 May; 17(3):336-8. PubMed ID: 11517614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative surfaces for microcarrier culture of animal cells.
    Gebb C; Clark JM; Hirtenstein MD; Lindgren GE; Lundgren BJ; Lindskog U; Vretblad PA
    Adv Exp Med Biol; 1984; 172():151-67. PubMed ID: 6731143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of physical parameters for cell attachment and growth on macroporous microcarriers.
    Ng YC; Berry JM; Butler M
    Biotechnol Bioeng; 1996 Jun; 50(6):627-35. PubMed ID: 18627071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.