These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 25383171)

  • 21. Optimization of nanofibrous silk fibroin scaffold as a delivery system for bone marrow adherent cells: in vitro and in vivo studies.
    Gholipourmalekabadi M; Mozafari M; Bandehpour M; Salehi M; Sameni M; Caicedo HH; Mehdipour A; Hamidabadi HG; Samadikuchaksaraei A; Ghanbarian H
    Biotechnol Appl Biochem; 2015; 62(6):785-94. PubMed ID: 25471678
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrospun silk fibroin fibers for storage and controlled release of human platelet lysate.
    Pignatelli C; Perotto G; Nardini M; Cancedda R; Mastrogiacomo M; Athanassiou A
    Acta Biomater; 2018 Jun; 73():365-376. PubMed ID: 29673841
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro and in vivo evaluation of effectiveness of a novel TEMPO-oxidized cellulose nanofiber-silk fibroin scaffold in wound healing.
    Shefa AA; Amirian J; Kang HJ; Bae SH; Jung HI; Choi HJ; Lee SY; Lee BT
    Carbohydr Polym; 2017 Dec; 177():284-296. PubMed ID: 28962770
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biodegradable Silk Fibroin Matrices for Wound Closure in a Human 3D Ex Vivo Approach.
    Strenge JT; Smeets R; Nemati F; Fuest S; Rhode SC; Stuermer EK
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930373
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase.
    Jiang P; Ran J; Yan P; Zheng L; Shen X; Tong H
    J Biomater Sci Polym Ed; 2018 Feb; 29(2):107-124. PubMed ID: 29140181
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bladder Acellular Matrix Graft Reinforced Silk Fibroin Composite Scaffolds Loaded VEGF with Aligned Electrospun Fibers in Multiple Layers.
    Li Z; Liu Q; Wang H; Song L; Shao H; Xie M; Xu Y; Zhang Y
    ACS Biomater Sci Eng; 2015 Apr; 1(4):238-246. PubMed ID: 33435048
    [No Abstract]   [Full Text] [Related]  

  • 27. An aligned porous electrospun fibrous membrane with controlled drug delivery - An efficient strategy to accelerate diabetic wound healing with improved angiogenesis.
    Ren X; Han Y; Wang J; Jiang Y; Yi Z; Xu H; Ke Q
    Acta Biomater; 2018 Apr; 70():140-153. PubMed ID: 29454159
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Comparative Analysis of the Structure and Biological Properties of Films and Microfibrous Scaffolds Based on Silk Fibroin.
    Safonova L; Bobrova M; Efimov A; Lyundup A; Agapova O; Agapov I
    Pharmaceutics; 2021 Sep; 13(10):. PubMed ID: 34683854
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Platelet lysate loaded electrospun scaffolds: Effect of nanofiber types on wound healing.
    Malgarim Cordenonsi L; Faccendini A; Rossi S; Bonferoni MC; Malavasi L; Raffin R; Scherman Schapoval EE; Del Fante C; Vigani B; Miele D; Sandri G; Ferrari F
    Eur J Pharm Biopharm; 2019 Sep; 142():247-257. PubMed ID: 31265896
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite-tussah silk fibroin nanoparticles for bone tissue engineering.
    Shao W; He J; Sang F; Ding B; Chen L; Cui S; Li K; Han Q; Tan W
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():342-51. PubMed ID: 26478319
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrospun scaffolds from silk fibroin and their cellular compatibility.
    Zhang K; Mo X; Huang C; He C; Wang H
    J Biomed Mater Res A; 2010 Jun; 93(3):976-83. PubMed ID: 19722283
    [TBL] [Abstract][Full Text] [Related]  

  • 32. bFGF-grafted electrospun fibrous scaffolds via poly(dopamine) for skin wound healing.
    Sun X; Cheng L; Zhao J; Jin R; Sun B; Shi Y; Zhang L; Zhang Y; Cui W
    J Mater Chem B; 2014 Jun; 2(23):3636-3645. PubMed ID: 32263800
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis and fabrication of novel quinone-based chromenopyrazole antioxidant-laden silk fibroin nanofibers scaffold for tissue engineering applications.
    Kandhasamy S; Arthi N; Arun RP; Verma RS
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():773-787. PubMed ID: 31147050
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrospinning Bombyx mori silk with poly(ethylene oxide).
    Jin HJ; Fridrikh SV; Rutledge GC; Kaplan DL
    Biomacromolecules; 2002; 3(6):1233-9. PubMed ID: 12425660
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Silk fibroin scaffolds seeded with Wharton's jelly mesenchymal stem cells enhance re-epithelialization and reduce formation of scar tissue after cutaneous wound healing.
    Millán-Rivero JE; Martínez CM; Romecín PA; Aznar-Cervantes SD; Carpes-Ruiz M; Cenis JL; Moraleda JM; Atucha NM; García-Bernal D
    Stem Cell Res Ther; 2019 Apr; 10(1):126. PubMed ID: 31029166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro.
    Wang Y; Zhao Z; Zhao B; Qi HX; Peng J; Zhang L; Xu WJ; Hu P; Lu SB
    Chin Med J (Engl); 2011 Aug; 124(15):2361-6. PubMed ID: 21933569
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Creation of macropores in electrospun silk fibroin scaffolds using sacrificial PEO-microparticles to enhance cellular infiltration.
    Wang K; Xu M; Zhu M; Su H; Wang H; Kong D; Wang L
    J Biomed Mater Res A; 2013 Dec; 101(12):3474-81. PubMed ID: 23606405
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modifying the mechanical properties of silk nanofiber scaffold by knitted orientation for regenerative medicine applications.
    Dodel M; Hemmati Nejad N; Bahrami SH; Soleimani M; Hanaee-Ahvaz H
    Cell Mol Biol (Noisy-le-grand); 2016 Aug; 62(10):16-25. PubMed ID: 27609469
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrospun Scaffold Micro-Architecture Induces an Activated Transcriptional Phenotype within Tendon Fibroblasts.
    Baldwin MJ; Mimpen JY; Cribbs AP; Stace E; Philpott M; Dakin SG; Carr AJ; Snelling SJ
    Front Bioeng Biotechnol; 2021; 9():795748. PubMed ID: 35096791
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlled release of titanocene into the hybrid nanofibrous scaffolds to prevent the proliferation of breast cancer cells.
    Laiva AL; Venugopal JR; Karuppuswamy P; Navaneethan B; Gora A; Ramakrishna S
    Int J Pharm; 2015 Apr; 483(1-2):115-23. PubMed ID: 25681729
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.