These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 25383240)

  • 1. A Perspective on the Potential of Human iPS Cell-Based Therapies for Muscular Dystrophies: Advancements so far and Hurdles to Overcome.
    Darabi R; Perlingeiro RC
    J Stem Cell Res Ther; 2013 May; 3():. PubMed ID: 25383240
    [No Abstract]   [Full Text] [Related]  

  • 2. Nanomedicine for Treating Muscle Dystrophies: Opportunities, Challenges, and Future Perspectives.
    Ahmed Z; Qaisar R
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Induced pluripotent stem (iPS) cell-based cell therapy for muscular dystrophy: current progress and future prospects].
    Nishiyama T; Takeda S
    Brain Nerve; 2012 Jan; 64(1):39-46. PubMed ID: 22223500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current advances in cell therapy strategies for muscular dystrophies.
    Negroni E; Vallese D; Vilquin JT; Butler-Browne G; Mouly V; Trollet C
    Expert Opin Biol Ther; 2011 Feb; 11(2):157-76. PubMed ID: 21219234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular Therapies for Muscular Dystrophies: Frustrations and Clinical Successes.
    Negroni E; Bigot A; Butler-Browne GS; Trollet C; Mouly V
    Hum Gene Ther; 2016 Feb; 27(2):117-26. PubMed ID: 26652770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pericytes in Muscular Dystrophies.
    Moyle LA; Tedesco FS; Benedetti S
    Adv Exp Med Biol; 2019; 1147():319-344. PubMed ID: 31147885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene and Cell Therapy for Muscular Dystrophies: Are We Getting There?
    Galli F; Bragg L; Meggiolaro L; Rossi M; Caffarini M; Naz N; Santoleri S; Cossu G
    Hum Gene Ther; 2018 Oct; 29(10):1098-1105. PubMed ID: 30132372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice.
    Darabi R; Arpke RW; Irion S; Dimos JT; Grskovic M; Kyba M; Perlingeiro RC
    Cell Stem Cell; 2012 May; 10(5):610-9. PubMed ID: 22560081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Commercialization challenges associated with induced pluripotent stem cell-based products.
    Smith D
    Regen Med; 2010 Jul; 5(4):593-603. PubMed ID: 20632862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Therapy development for spinal muscular atrophy: perspectives for muscular dystrophies and neurodegenerative disorders.
    Jablonka S; Hennlein L; Sendtner M
    Neurol Res Pract; 2022 Jan; 4(1):2. PubMed ID: 34983696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas correction of muscular dystrophies.
    Zhang Y; Nishiyama T; Olson EN; Bassel-Duby R
    Exp Cell Res; 2021 Nov; 408(1):112844. PubMed ID: 34571006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iPSCs as a Platform for Disease Modeling, Drug Screening, and Personalized Therapy in Muscular Dystrophies.
    Ortiz-Vitali JL; Darabi R
    Cells; 2019 Jan; 8(1):. PubMed ID: 30609814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The muscular dystrophies.
    Wicklund MP
    Continuum (Minneap Minn); 2013 Dec; 19(6 Muscle Disease):1535-70. PubMed ID: 24305447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ECM-Related Myopathies and Muscular Dystrophies: Pros and Cons of Protein Therapies.
    Van Ry PM; Fontelonga TM; Barraza-Flores P; Sarathy A; Nunes AM; Burkin DJ
    Compr Physiol; 2017 Sep; 7(4):1519-1536. PubMed ID: 28915335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stem cell therapies to treat muscular dystrophy: progress to date.
    Meregalli M; Farini A; Parolini D; Maciotta S; Torrente Y
    BioDrugs; 2010 Aug; 24(4):237-47. PubMed ID: 20623990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Animal models for muscular dystrophy: valuable tools for the development of therapies.
    Allamand V; Campbell KP
    Hum Mol Genet; 2000 Oct; 9(16):2459-67. PubMed ID: 11005802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viable iPSC mice: a step closer to therapeutic applications in humans?
    Betts DH; Kalionis B
    Mol Hum Reprod; 2010 Feb; 16(2):57-62. PubMed ID: 19952032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Swimming into prominence: the zebrafish as a valuable tool for studying human myopathies and muscular dystrophies.
    Gibbs EM; Horstick EJ; Dowling JJ
    FEBS J; 2013 Sep; 280(17):4187-97. PubMed ID: 23809187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HLA-based banking of induced pluripotent stem cells in Saudi Arabia.
    Alowaysi M; Lehmann R; Al-Shehri M; Baadhaim M; Alzahrani H; Aboalola D; Zia A; Malibari D; Daghestani M; Alghamdi K; Haneef A; Jawdat D; Hakami F; Gomez-Cabrero D; Tegner J; Alsayegh K
    Stem Cell Res Ther; 2023 Dec; 14(1):374. PubMed ID: 38111036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The bi-directional relationship between sleep and inflammation in muscular dystrophies: A narrative review.
    Mahon N; Glennon JC
    Neurosci Biobehav Rev; 2023 Jul; 150():105116. PubMed ID: 36870583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.