These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 25383276)

  • 1. Multi-frequency tapping-mode atomic force microscopy beyond three eigenmodes in ambient air.
    Solares SD; An S; Long CJ
    Beilstein J Nanotechnol; 2014; 5():1637-48. PubMed ID: 25383276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple regimes of operation in bimodal AFM: understanding the energy of cantilever eigenmodes.
    Kiracofe D; Raman A; Yablon D
    Beilstein J Nanotechnol; 2013; 4():385-93. PubMed ID: 23844344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging of viscoelastic soft matter with small indentation using higher eigenmodes in single-eigenmode amplitude-modulation atomic force microscopy.
    Nikfarjam M; López-Guerra EA; Solares SD; Eslami B
    Beilstein J Nanotechnol; 2018; 9():1116-1122. PubMed ID: 29719762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bimodal atomic force microscopy driving the higher eigenmode in frequency-modulation mode: Implementation, advantages, disadvantages and comparison to the open-loop case.
    Ebeling D; Solares SD
    Beilstein J Nanotechnol; 2013; 4():198-207. PubMed ID: 23616939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cantilever energy effects on bimodal AFM: phase and amplitude contrast of multicomponent samples.
    Chakraborty I; Yablon DG
    Nanotechnology; 2013 Nov; 24(47):475706. PubMed ID: 24177059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges and complexities of multifrequency atomic force microscopy in liquid environments.
    Solares SD
    Beilstein J Nanotechnol; 2014; 5():298-307. PubMed ID: 24778952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy transfer between eigenmodes in multimodal atomic force microscopy.
    An S; Solares SD; Santos S; Ebeling D
    Nanotechnology; 2014 Nov; 25(47):475701. PubMed ID: 25369864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trade-offs in sensitivity and sampling depth in bimodal atomic force microscopy and comparison to the trimodal case.
    Eslami B; Ebeling D; Solares SD
    Beilstein J Nanotechnol; 2014; 5():1144-51. PubMed ID: 25161847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repulsive bimodal atomic force microscopy on polymers.
    Gigler AM; Dietz C; Baumann M; Martinez NF; García R; Stark RW
    Beilstein J Nanotechnol; 2012; 3():456-63. PubMed ID: 23016150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-eigenmode control for high material contrast in bimodal and higher harmonic atomic force microscopy.
    Schuh A; Bozchalooi IS; Rangelow IW; Youcef-Toumi K
    Nanotechnology; 2015 Jun; 26(23):235706. PubMed ID: 25994333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of the excitation frequency for high probe sensitivity in single-eigenmode and bimodal tapping-mode AFM.
    Eslami B; López-Guerra EA; Diaz AJ; Solares SD
    Nanotechnology; 2015 Apr; 26(16):165703. PubMed ID: 25825001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized Hertz model for bimodal nanomechanical mapping.
    Labuda A; Kocuń M; Meinhold W; Walters D; Proksch R
    Beilstein J Nanotechnol; 2016; 7():970-82. PubMed ID: 27547614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulation of bimodal atomic force microscopy.
    Dou Z; Qian J; Li Y; Wang Z; Zhang Y; Lin R; Wang T
    Ultramicroscopy; 2020 May; 212():112971. PubMed ID: 32126474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of dynamic cantilever behavior in tapping mode atomic force microscopy.
    Deng W; Zhang GM; Murphy MF; Lilley F; Harvey DM; Burton DR
    Microsc Res Tech; 2015 Oct; 78(10):935-46. PubMed ID: 26303510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical study of the frequency shift in bimodal FM-AFM by fractional calculus.
    Herruzo ET; Garcia R
    Beilstein J Nanotechnol; 2012; 3():198-206. PubMed ID: 22496992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multimodal atomic force microscopy with optimized higher eigenmode sensitivity using on-chip piezoelectric actuation and sensing.
    Ruppert MG; Moore SI; Zawierta M; Fleming AJ; Putrino G; Yong YK
    Nanotechnology; 2019 Feb; 30(8):085503. PubMed ID: 30251962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-speed dynamic atomic force microscopy by using a Q-controlled cantilever eigenmode as an actuator.
    Balantekin M
    Ultramicroscopy; 2015 Feb; 149():45-50. PubMed ID: 25436928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving tapping mode atomic force microscopy with piezoelectric cantilevers.
    Rogers B; Manning L; Sulchek T; Adams JD
    Ultramicroscopy; 2004 Aug; 100(3-4):267-76. PubMed ID: 15231319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tapping mode imaging and measurements with an inverted atomic force microscope.
    Chan SS; Green JB
    Langmuir; 2006 Jul; 22(15):6701-6. PubMed ID: 16831016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of the higher eigenmodes of a microcantilever: applications in atomic force microscopy.
    Karvinen KS; Moheimani SO
    Ultramicroscopy; 2014 Feb; 137():66-71. PubMed ID: 24361530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.