These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 25383277)

  • 1. Probing viscoelastic surfaces with bimodal tapping-mode atomic force microscopy: Underlying physics and observables for a standard linear solid model.
    Solares SD
    Beilstein J Nanotechnol; 2014; 5():1649-63. PubMed ID: 25383277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrimination of adhesion and viscoelasticity from nanoscale maps of polymer surfaces using bimodal atomic force microscopy.
    Rajabifar B; Bajaj A; Reifenberger R; Proksch R; Raman A
    Nanoscale; 2021 Oct; 13(41):17428-17441. PubMed ID: 34647552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling viscoelasticity through spring-dashpot models in intermittent-contact atomic force microscopy.
    López-Guerra EA; Solares SD
    Beilstein J Nanotechnol; 2014; 5():2149-63. PubMed ID: 25551043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple and efficient quasi 3-dimensional viscoelastic model and software for simulation of tapping-mode atomic force microscopy.
    Solares SD
    Beilstein J Nanotechnol; 2015; 6():2233-41. PubMed ID: 26734515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale effects in the characterization of viscoelastic materials with atomic force microscopy: coupling of a quasi-three-dimensional standard linear solid model with in-plane surface interactions.
    Solares SD
    Beilstein J Nanotechnol; 2016; 7():554-71. PubMed ID: 27335746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic force microscopy simulator (dForce): A tool for planning and understanding tapping and bimodal AFM experiments.
    Guzman HV; Garcia PD; Garcia R
    Beilstein J Nanotechnol; 2015; 6():369-79. PubMed ID: 25821676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the frequency dependence of viscoelastic material characterization with intermittent-contact dynamic atomic force microscopy: avoiding mischaracterization across large frequency ranges.
    López-Guerra EA; Solares SD
    Beilstein J Nanotechnol; 2020; 11():1409-1418. PubMed ID: 33014681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Material property analytical relations for the case of an AFM probe tapping a viscoelastic surface containing multiple characteristic times.
    López-Guerra EA; Solares SD
    Beilstein J Nanotechnol; 2017; 8():2230-2244. PubMed ID: 29114450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast, quantitative and high resolution mapping of viscoelastic properties with bimodal AFM.
    Benaglia S; Amo CA; Garcia R
    Nanoscale; 2019 Aug; 11(32):15289-15297. PubMed ID: 31386741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of phase contrast in bimodal amplitude modulation AFM.
    Damircheli M; Payam AF; Garcia R
    Beilstein J Nanotechnol; 2015; 6():1072-81. PubMed ID: 26114079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulation of bimodal atomic force microscopy.
    Dou Z; Qian J; Li Y; Wang Z; Zhang Y; Lin R; Wang T
    Ultramicroscopy; 2020 May; 212():112971. PubMed ID: 32126474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-frequency tapping-mode atomic force microscopy beyond three eigenmodes in ambient air.
    Solares SD; An S; Long CJ
    Beilstein J Nanotechnol; 2014; 5():1637-48. PubMed ID: 25383276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current measurements in the intermittent-contact mode of atomic force microscopy using the Fourier method: a feasibility analysis.
    Uluutku B; Solares SD
    Beilstein J Nanotechnol; 2020; 11():453-465. PubMed ID: 32215233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast, High Resolution, and Wide Modulus Range Nanomechanical Mapping with Bimodal Tapping Mode.
    Kocun M; Labuda A; Meinhold W; Revenko I; Proksch R
    ACS Nano; 2017 Oct; 11(10):10097-10105. PubMed ID: 28953363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of the excitation frequency for high probe sensitivity in single-eigenmode and bimodal tapping-mode AFM.
    Eslami B; López-Guerra EA; Diaz AJ; Solares SD
    Nanotechnology; 2015 Apr; 26(16):165703. PubMed ID: 25825001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency, amplitude, and phase measurements in contact resonance atomic force microscopies.
    Stan G; Solares SD
    Beilstein J Nanotechnol; 2014; 5():278-88. PubMed ID: 24778949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenges and complexities of multifrequency atomic force microscopy in liquid environments.
    Solares SD
    Beilstein J Nanotechnol; 2014; 5():298-307. PubMed ID: 24778952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repulsive bimodal atomic force microscopy on polymers.
    Gigler AM; Dietz C; Baumann M; Martinez NF; García R; Stark RW
    Beilstein J Nanotechnol; 2012; 3():456-63. PubMed ID: 23016150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of dynamic cantilever behavior in tapping mode atomic force microscopy.
    Deng W; Zhang GM; Murphy MF; Lilley F; Harvey DM; Burton DR
    Microsc Res Tech; 2015 Oct; 78(10):935-46. PubMed ID: 26303510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single biomolecule imaging with frequency and force modulation in tapping-mode atomic force microscopy.
    Solares SD
    J Phys Chem B; 2007 Mar; 111(9):2125-9. PubMed ID: 17291035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.