These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 25383306)

  • 1. PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments.
    Ahlberg S; Antonopulos A; Diendorf J; Dringen R; Epple M; Flöck R; Goedecke W; Graf C; Haberl N; Helmlinger J; Herzog F; Heuer F; Hirn S; Johannes C; Kittler S; Köller M; Korn K; Kreyling WG; Krombach F; Lademann J; Loza K; Luther EM; Malissek M; Meinke MC; Nordmeyer D; Pailliart A; Raabe J; Rancan F; Rothen-Rutishauser B; Rühl E; Schleh C; Seibel A; Sengstock C; Treuel L; Vogt A; Weber K; Zellner R
    Beilstein J Nanotechnol; 2014; 5():1944-65. PubMed ID: 25383306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent Flavin/PVP-Coated Silver Nanoparticles: Design and Biological Performance.
    Voicescu M; Craciunescu O; Calderon-Moreno JM; Anastasescu M; Manoiu VS; Tatia R; Culita DC; Moldovan L
    J Fluoresc; 2022 Jul; 32(4):1309-1319. PubMed ID: 35362934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species.
    Carlson C; Hussain SM; Schrand AM; Braydich-Stolle LK; Hess KL; Jones RL; Schlager JJ
    J Phys Chem B; 2008 Oct; 112(43):13608-19. PubMed ID: 18831567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release.
    Gliga AR; Skoglund S; Wallinder IO; Fadeel B; Karlsson HL
    Part Fibre Toxicol; 2014 Feb; 11():11. PubMed ID: 24529161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of a protein corona on silver nanoparticles mediates cellular toxicity via scavenger receptors.
    Shannahan JH; Podila R; Aldossari AA; Emerson H; Powell BA; Ke PC; Rao AM; Brown JM
    Toxicol Sci; 2015 Jan; 143(1):136-46. PubMed ID: 25326241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro exposure of a 3D-tetraculture representative for the alveolar barrier at the air-liquid interface to silver particles and nanowires.
    Fizeșan I; Cambier S; Moschini E; Chary A; Nelissen I; Ziebel J; Audinot JN; Wirtz T; Kruszewski M; Pop A; Kiss B; Serchi T; Loghin F; Gutleb AC
    Part Fibre Toxicol; 2019 Apr; 16(1):14. PubMed ID: 30940208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Silver Nanoparticles on Physiological and Proteomic Responses of Tobacco (
    Biba R; Cvjetko P; Tkalec M; Košpić K; Štefanić PP; Šikić S; Domijan AM; Balen B
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative biokinetics over a 28 day period of freshly generated, pristine, 20 nm silver nanoparticle aerosols in healthy adult rats after a single 1½-hour inhalation exposure.
    Kreyling WG; Holzwarth U; Hirn S; Schleh C; Wenk A; Schäffler M; Haberl N; Gibson N
    Part Fibre Toxicol; 2020 Jun; 17(1):21. PubMed ID: 32503677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating oxidative stress and inflammatory responses elicited by silver nanoparticles using high-throughput reporter genes in HepG2 cells: effect of size, surface coating, and intracellular uptake.
    Prasad RY; McGee JK; Killius MG; Suarez DA; Blackman CF; DeMarini DM; Simmons SO
    Toxicol In Vitro; 2013 Sep; 27(6):2013-21. PubMed ID: 23872425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-platform genotoxicity analysis of silver nanoparticles in the model cell line CHO-K1.
    Jiang X; Foldbjerg R; Miclaus T; Wang L; Singh R; Hayashi Y; Sutherland D; Chen C; Autrup H; Beer C
    Toxicol Lett; 2013 Sep; 222(1):55-63. PubMed ID: 23872614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of silver nanoparticles in cells by flow cytometry using light scatter and far-red fluorescence.
    Zucker RM; Daniel KM; Massaro EJ; Karafas SJ; Degn LL; Boyes WK
    Cytometry A; 2013 Oct; 83(10):962-72. PubMed ID: 23943267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle size dependent deposition and pulmonary inflammation after short-term inhalation of silver nanoparticles.
    Braakhuis HM; Gosens I; Krystek P; Boere JA; Cassee FR; Fokkens PH; Post JA; van Loveren H; Park MV
    Part Fibre Toxicol; 2014 Sep; 11():49. PubMed ID: 25227272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All that is silver is not toxic: silver ion and particle kinetics reveals the role of silver ion aging and dosimetry on the toxicity of silver nanoparticles.
    Smith JN; Thomas DG; Jolley H; Kodali VK; Littke MH; Munusamy P; Baer DR; Gaffrey MJ; Thrall BD; Teeguarden JG
    Part Fibre Toxicol; 2018 Dec; 15(1):47. PubMed ID: 30518385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The oxidative potential of differently charged silver and gold nanoparticles on three human lung epithelial cell types.
    Schlinkert P; Casals E; Boyles M; Tischler U; Hornig E; Tran N; Zhao J; Himly M; Riediker M; Oostingh GJ; Puntes V; Duschl A
    J Nanobiotechnology; 2015 Jan; 13():1. PubMed ID: 25592092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mimicking exposures to acute and lifetime concentrations of inhaled silver nanoparticles by two different in vitro approaches.
    Herzog F; Loza K; Balog S; Clift MJ; Epple M; Gehr P; Petri-Fink A; Rothen-Rutishauser B
    Beilstein J Nanotechnol; 2014; 5():1357-70. PubMed ID: 25247119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon nanodots: Opportunities and limitations to study their biodistribution at the human lung epithelial tissue barrier.
    Durantie E; Barosova H; Drasler B; Rodriguez-Lorenzo L; Urban DA; Vanhecke D; Septiadi D; Hirschi-Ackermann L; Petri-Fink A; Rothen-Rutishauser B
    Biointerphases; 2018 Sep; 13(6):06D404. PubMed ID: 30205690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low molecular weight chitosan-coated silver nanoparticles are effective for the treatment of MRSA-infected wounds.
    Peng Y; Song C; Yang C; Guo Q; Yao M
    Int J Nanomedicine; 2017; 12():295-304. PubMed ID: 28115847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-biological effects of zinc oxide spheres and rods from the nano- to the microscale at sub-toxic levels.
    Olejnik M; Kersting M; Rosenkranz N; Loza K; Breisch M; Rostek A; Prymak O; Schürmeyer L; Westphal G; Köller M; Bünger J; Epple M; Sengstock C
    Cell Biol Toxicol; 2021 Aug; 37(4):573-593. PubMed ID: 33205376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity.
    Jiang X; Miclăuş T; Wang L; Foldbjerg R; Sutherland DS; Autrup H; Chen C; Beer C
    Nanotoxicology; 2015 Mar; 9(2):181-9. PubMed ID: 24738617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.