BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 25383519)

  • 1. The participation of cortical amygdala in innate, odour-driven behaviour.
    Root CM; Denny CA; Hen R; Axel R
    Nature; 2014 Nov; 515(7526):269-73. PubMed ID: 25383519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct representations of olfactory information in different cortical centres.
    Sosulski DL; Bloom ML; Cutforth T; Axel R; Datta SR
    Nature; 2011 Apr; 472(7342):213-6. PubMed ID: 21451525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical representations of olfactory input by trans-synaptic tracing.
    Miyamichi K; Amat F; Moussavi F; Wang C; Wickersham I; Wall NR; Taniguchi H; Tasic B; Huang ZJ; He Z; Callaway EM; Horowitz MA; Luo L
    Nature; 2011 Apr; 472(7342):191-6. PubMed ID: 21179085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A centrifugal pathway to the mouse accessory olfactory bulb from the medial amygdala conveys gender-specific volatile pheromonal signals.
    Martel KL; Baum MJ
    Eur J Neurosci; 2009 Jan; 29(2):368-76. PubMed ID: 19077123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sex differences in olfactory-induced neural activation of the amygdala.
    Kikusui T; Kajita M; Otsuka N; Hattori T; Kumazawa K; Watarai A; Nagasawa M; Inutsuka A; Yamanaka A; Matsuo N; Covington HE; Mogi K
    Behav Brain Res; 2018 Jul; 346():96-104. PubMed ID: 29203334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amygdala Corticofugal Input Shapes Mitral Cell Responses in the Accessory Olfactory Bulb.
    Oboti L; Russo E; Tran T; Durstewitz D; Corbin JG
    eNeuro; 2018; 5(3):. PubMed ID: 29911171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Innate versus learned odour processing in the mouse olfactory bulb.
    Kobayakawa K; Kobayakawa R; Matsumoto H; Oka Y; Imai T; Ikawa M; Okabe M; Ikeda T; Itohara S; Kikusui T; Mori K; Sakano H
    Nature; 2007 Nov; 450(7169):503-8. PubMed ID: 17989651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensory maps in the olfactory cortex defined by long-range viral tracing of single neurons.
    Ghosh S; Larson SD; Hefzi H; Marnoy Z; Cutforth T; Dokka K; Baldwin KK
    Nature; 2011 Apr; 472(7342):217-20. PubMed ID: 21451523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional properties and projections of neurons in the medial amygdala.
    Keshavarzi S; Sullivan RK; Ianno DJ; Sah P
    J Neurosci; 2014 Jun; 34(26):8699-715. PubMed ID: 24966371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and flexibility in cortical representations of odour space.
    Pashkovski SL; Iurilli G; Brann D; Chicharro D; Drummey K; Franks KM; Panzeri S; Datta SR
    Nature; 2020 Jul; 583(7815):253-258. PubMed ID: 32612230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Population Coding in an Innately Relevant Olfactory Area.
    Iurilli G; Datta SR
    Neuron; 2017 Mar; 93(5):1180-1197.e7. PubMed ID: 28238549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Odour recognition and segmentation by a model olfactory bulb and cortex.
    Li Z; Hertz J
    Network; 2000 Feb; 11(1):83-102. PubMed ID: 10735530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Olfactory neuroscience: beyond the bulb.
    Friedrich RW
    Curr Biol; 2011 Jun; 21(11):R438-40. PubMed ID: 21640905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-redundant coding of aversive odours in the main olfactory pathway.
    Dewan A; Pacifico R; Zhan R; Rinberg D; Bozza T
    Nature; 2013 May; 497(7450):486-9. PubMed ID: 23624375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of accessory olfactory system and medial amygdala in the zebrafish.
    Biechl D; Tietje K; Ryu S; Grothe B; Gerlach G; Wullimann MF
    Sci Rep; 2017 Mar; 7():44295. PubMed ID: 28290515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In sexually naive anestrous ewes, male odour is unable to induce a complete activation of olfactory systems.
    Chanvallon A; Fabre-Nys C
    Behav Brain Res; 2009 Dec; 205(1):272-9. PubMed ID: 19695291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Task-Demand-Dependent Neural Representation of Odor Information in the Olfactory Bulb and Posterior Piriform Cortex.
    Wang D; Liu P; Mao X; Zhou Z; Cao T; Xu J; Sun C; Li A
    J Neurosci; 2019 Dec; 39(50):10002-10018. PubMed ID: 31672791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualizing the engram: learning stabilizes odor representations in the olfactory network.
    Shakhawat AM; Gheidi A; Hou Q; Dhillon SK; Marrone DF; Harley CW; Yuan Q
    J Neurosci; 2014 Nov; 34(46):15394-401. PubMed ID: 25392506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Olfactory perceptual stability and discrimination.
    Barnes DC; Hofacer RD; Zaman AR; Rennaker RL; Wilson DA
    Nat Neurosci; 2008 Dec; 11(12):1378-80. PubMed ID: 18978781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Both olfactory epithelial and vomeronasal inputs are essential for activation of the medial amygdala and preoptic neurons of male rats.
    Dhungel S; Masaoka M; Rai D; Kondo Y; Sakuma Y
    Neuroscience; 2011 Dec; 199():225-34. PubMed ID: 21983295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.