BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 2538353)

  • 1. Inactivation of alpha 1-antiproteinase by hydroxyl radicals. The effect of uric acid.
    Aruoma OI; Halliwell B
    FEBS Lett; 1989 Feb; 244(1):76-80. PubMed ID: 2538353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid.
    Aruoma OI; Halliwell B; Hoey BM; Butler J
    Free Radic Biol Med; 1989; 6(6):593-7. PubMed ID: 2546864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apparent inactivation of alpha 1-antiproteinase by sulphur-containing radicals derived from penicillamine.
    Aruoma OI; Halliwell B; Butler J; Hoey BM
    Biochem Pharmacol; 1989 Dec; 38(24):4353-7. PubMed ID: 2557847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The antioxidant action of taurine, hypotaurine and their metabolic precursors.
    Aruoma OI; Halliwell B; Hoey BM; Butler J
    Biochem J; 1988 Nov; 256(1):251-5. PubMed ID: 2851980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superoxide-dependent and ascorbate-dependent formation of hydroxyl radicals in the presence of copper salts: a physiologically significant reaction?
    Rowley DA; Halliwell B
    Arch Biochem Biophys; 1983 Aug; 225(1):279-84. PubMed ID: 6311105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethanol oxidation by hydroxyl radicals: role of iron chelates, superoxide, and hydrogen peroxide.
    Feierman DE; Winston GW; Cederbaum AI
    Alcohol Clin Exp Res; 1985; 9(2):95-102. PubMed ID: 2988364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Action of biologically-relevant oxidizing species upon uric acid. Identification of uric acid oxidation products.
    Kaur H; Halliwell B
    Chem Biol Interact; 1990; 73(2-3):235-47. PubMed ID: 2155712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The antioxidant action of human extracellular fluids. Effect of human serum and its protein components on the inactivation of alpha 1-antiproteinase by hypochlorous acid and by hydrogen peroxide.
    Wasil M; Halliwell B; Hutchison DC; Baum H
    Biochem J; 1987 Apr; 243(1):219-23. PubMed ID: 3038080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alkaline phosphatase inactivation by mixed function oxidation systems.
    Mordente A; Miggiano GA; Martorana GE; Meucci E; Santini SA; Castelli A
    Arch Biochem Biophys; 1987 Oct; 258(1):176-85. PubMed ID: 2821917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid peroxidation initiated by superoxide-dependent hydroxyl radicals using complexed iron and hydrogen peroxide.
    Gutteridge JM
    FEBS Lett; 1984 Jul; 172(2):245-9. PubMed ID: 6086389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carnosine, homocarnosine and anserine: could they act as antioxidants in vivo?
    Aruoma OI; Laughton MJ; Halliwell B
    Biochem J; 1989 Dec; 264(3):863-9. PubMed ID: 2559719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superoxide-dependent and ascorbate-dependent formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Are lactoferrin and transferrin promoters of hydroxyl-radical generation?
    Aruoma OI; Halliwell B
    Biochem J; 1987 Jan; 241(1):273-8. PubMed ID: 3032157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manganese complexes and the generation and scavenging of hydroxyl free radicals.
    Cheton PL; Archibald FS
    Free Radic Biol Med; 1988; 5(5-6):325-33. PubMed ID: 2855733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The antioxidant action of ergothioneine.
    Akanmu D; Cecchini R; Aruoma OI; Halliwell B
    Arch Biochem Biophys; 1991 Jul; 288(1):10-6. PubMed ID: 1654816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superoxide-dependent formation of hydroxyl radical catalyzed by transferrin.
    Motohashi N; Mori I
    FEBS Lett; 1983 Jun; 157(1):197-9. PubMed ID: 6305716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xanthine oxidase-induced injury to endothelium: role of intracellular iron and hydroxyl radical.
    Kvietys PR; Inauen W; Bacon BR; Grisham MB
    Am J Physiol; 1989 Nov; 257(5 Pt 2):H1640-6. PubMed ID: 2556049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of porphyrins on iron-catalysed generation of hydroxyl radicals.
    Van Steveninck J; Boegheim JP; Dubbelman TM; Van der Zee J
    Biochem J; 1988 Feb; 250(1):197-201. PubMed ID: 2833235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipoic and dihydrolipoic acids as antioxidants. A critical evaluation.
    Scott BC; Aruoma OI; Evans PJ; O'Neill C; Van der Vliet A; Cross CE; Tritschler H; Halliwell B
    Free Radic Res; 1994 Feb; 20(2):119-33. PubMed ID: 7516789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative damage to fibronectin. II. The effect of H2O2 and the hydroxyl radical.
    Vissers MC; Winterbourn CC
    Arch Biochem Biophys; 1991 Mar; 285(2):357-64. PubMed ID: 1654773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superoxide-dependent formation of hydroxyl radicals: detection of hydroxyl radicals by the hydroxylation of aromatic compounds.
    Richmond R; Halliwell B; Chauhan J; Darbre A
    Anal Biochem; 1981 Dec; 118(2):328-35. PubMed ID: 6278984
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.