BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 2538353)

  • 21. Formation of hydroxyl radicals from hydrogen peroxide and iron salts by superoxide- and ascorbate-dependent mechanisms: relevance to the pathology of rheumatoid disease.
    Rowley DA; Halliwell B
    Clin Sci (Lond); 1983 Jun; 64(6):649-53. PubMed ID: 6301745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Free radicals inactivate human neutrophil elastase and its inhibitors with comparable efficiency.
    Dean RT; Nick HP; Schnebli HP
    Biochem Biophys Res Commun; 1989 Mar; 159(2):821-7. PubMed ID: 2784675
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative effects of iron chelators on hydroxyl radical production by the superoxide-driven fenton reaction.
    Smith JB; Cusumano JC; Babbs CF
    Free Radic Res Commun; 1990; 8(2):101-6. PubMed ID: 2156748
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pentoxifylline. A hydroxyl radical scavenger.
    Freitas JP; Filipe PM
    Biol Trace Elem Res; 1995; 47(1-3):307-11. PubMed ID: 7779563
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protection against peroxynitrite-dependent tyrosine nitration and alpha 1-antiproteinase inactivation by ascorbic acid. A comparison with other biological antioxidants.
    Whiteman M; Halliwell B
    Free Radic Res; 1996 Sep; 25(3):275-83. PubMed ID: 8889493
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxygen-dependent antagonism of lipid peroxidation.
    Thom SR; Elbuken ME
    Free Radic Biol Med; 1991; 10(6):413-26. PubMed ID: 1654290
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of the antioxidant actions of ferulic acid and catechins.
    Scott BC; Butler J; Halliwell B; Aruoma OI
    Free Radic Res Commun; 1993; 19(4):241-53. PubMed ID: 7507456
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydroxyl radical mediated demethylenation of (methylenedioxy)phenyl compounds.
    Kumagai Y; Lin LY; Schmitz DA; Cho AK
    Chem Res Toxicol; 1991; 4(3):330-4. PubMed ID: 1680477
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Free radical pathology: inactivation of human alpha-1-proteinase inhibitor by products from the reaction of nitrogen dioxide with hydrogen peroxide and the etiology of emphysema.
    Dooley MM; Pryor WA
    Biochem Biophys Res Commun; 1982 Jun; 106(3):981-7. PubMed ID: 6810890
    [No Abstract]   [Full Text] [Related]  

  • 30. The hydroxylation of tryptophan.
    Maskos Z; Rush JD; Koppenol WH
    Arch Biochem Biophys; 1992 Aug; 296(2):514-20. PubMed ID: 1321587
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spin traps inhibit formation of hydrogen peroxide via the dismutation of superoxide: implications for spin trapping the hydroxyl free radical.
    Britigan BE; Roeder TL; Buettner GR
    Biochim Biophys Acta; 1991 Oct; 1075(3):213-22. PubMed ID: 1659450
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Superoxide dismutase inhibits the superoxide-driven Fenton reaction at two different levels. Implications for a wider protective role.
    Gutteridge JM
    FEBS Lett; 1985 Jun; 185(1):19-23. PubMed ID: 2987038
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Increase in microvascular permeability induced by enzymatically generated free radicals. II. Role of superoxide anion radical, hydrogen peroxide, and hydroxyl radical.
    Del Maestro RF; Björk J; Arfors KE
    Microvasc Res; 1981 Nov; 22(3):255-70. PubMed ID: 6276700
    [No Abstract]   [Full Text] [Related]  

  • 34. Evaluation of the ability of the angiotensin-converting enzyme inhibitor captopril to scavenge reactive oxygen species.
    Aruoma OI; Akanmu D; Cecchini R; Halliwell B
    Chem Biol Interact; 1991; 77(3):303-14. PubMed ID: 1849048
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of the protective effects of the antioxidants ascorbate, cysteine, and dapsone on the phagocyte-mediated oxidative inactivation of human alpha-1-protease inhibitor in vitro.
    Theron A; Anderson R
    Am Rev Respir Dis; 1985 Nov; 132(5):1049-54. PubMed ID: 2998243
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Xanthine oxidase induced depolymerization of hyaluronic acid in the presence of ferritin.
    Carlin G; Djursäter R
    FEBS Lett; 1984 Nov; 177(1):27-30. PubMed ID: 6094241
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Participation of iron in OH-radical formation in a system generating a superoxide anion-radical].
    Osipov AN; Savov VM; Zubarev VE; Azizova OA; Vladimirov IuA
    Biofizika; 1981; 26(2):193-7. PubMed ID: 6266504
    [No Abstract]   [Full Text] [Related]  

  • 38. Myeloperoxidase as an effective inhibitor of hydroxyl radical production. Implications for the oxidative reactions of neutrophils.
    Winterbourn CC
    J Clin Invest; 1986 Aug; 78(2):545-50. PubMed ID: 3016031
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of zinc on superoxide-dependent hydroxyl radical production in vitro.
    Coudray C; Rachidi S; Favier A
    Biol Trace Elem Res; 1993 Sep; 38(3):273-87. PubMed ID: 7504944
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Superoxide dismutase and Fenton chemistry. Reaction of ferric-EDTA complex and ferric-bipyridyl complex with hydrogen peroxide without the apparent formation of iron(II).
    Gutteridge JM; Maidt L; Poyer L
    Biochem J; 1990 Jul; 269(1):169-74. PubMed ID: 2165392
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.