These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 2538353)

  • 41. Superoxide-dependent and -independent mechanisms of iron mobilization from ferritin by xanthine oxidase. Implications for oxygen-free-radical-induced tissue destruction during ischaemia and inflammation.
    Biemond P; Swaak AJ; Beindorff CM; Koster JF
    Biochem J; 1986 Oct; 239(1):169-73. PubMed ID: 3026367
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of pH on yields of hydroxyl radicals produced from superoxide by potential biological iron chelators.
    Baker MS; Gebicki JM
    Arch Biochem Biophys; 1986 May; 246(2):581-8. PubMed ID: 3010865
    [TBL] [Abstract][Full Text] [Related]  

  • 43. How relevant is the reoxidation of ferrocytochrome c by hydrogen peroxide when determining superoxide anion production?
    Turrens JF; McCord JM
    FEBS Lett; 1988 Jan; 227(1):43-6. PubMed ID: 2828112
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Superoxide-dependent formation of hydroxyl radicals from ferric-complexes and hydrogen peroxide: an evaluation of fourteen iron chelators.
    Gutteridge JM
    Free Radic Res Commun; 1990; 9(2):119-25. PubMed ID: 2161386
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Formation of thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: the role of superoxide and hydroxyl radicals.
    Halliwell B; Gutteridge JM
    FEBS Lett; 1981 Jun; 128(2):347-52. PubMed ID: 6266877
    [No Abstract]   [Full Text] [Related]  

  • 46. Hydroxyl radical attack on dopamine.
    Slivka A; Cohen G
    J Biol Chem; 1985 Dec; 260(29):15466-72. PubMed ID: 2999117
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In vivo and in vitro oxidative biotransformation of dimethylformamide in rat.
    Scailteur V; Lauwerys R
    Chem Biol Interact; 1984 Aug; 50(3):327-37. PubMed ID: 6086163
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydroxyl radical induced oxidation of theophylline in water: a kinetic and mechanistic study.
    Sunil Paul MM; Aravind UK; Pramod G; Saha A; Aravindakumar CT
    Org Biomol Chem; 2014 Aug; 12(30):5611-20. PubMed ID: 24957195
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Production of formaldehyde during metabolism of dimethyl sulfoxide by hydroxyl radical generating systems.
    Klein SM; Cohen G; Cederbaum AI
    Biochemistry; 1981 Oct; 20(21):6006-12. PubMed ID: 6272833
    [No Abstract]   [Full Text] [Related]  

  • 50. Protection of mammalian cells by o-phenanthroline from lethal and DNA-damaging effects produced by active oxygen species.
    de Mello Filho AC; Meneghini R
    Biochim Biophys Acta; 1985 Oct; 847(1):82-9. PubMed ID: 2996616
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effect of hemoglobin, hematin, and iron on neutrophil inactivation in superoxide generating systems.
    Kim YM; Yamazaki I; Piette LH
    Arch Biochem Biophys; 1994 Mar; 309(2):308-14. PubMed ID: 8135543
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Iron ion-dependent modification of bases in DNA by the superoxide radical-generating system hypoxanthine/xanthine oxidase.
    Aruoma OI; Halliwell B; Dizdaroglu M
    J Biol Chem; 1989 Aug; 264(22):13024-8. PubMed ID: 2546943
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The deoxyribose method: a simple "test-tube" assay for determination of rate constants for reactions of hydroxyl radicals.
    Halliwell B; Gutteridge JM; Aruoma OI
    Anal Biochem; 1987 Aug; 165(1):215-9. PubMed ID: 3120621
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A kinetic study on iron stimulation of the xanthine oxidase dependent oxidation of ascorbate.
    Løvstad RA
    Biometals; 2003 Sep; 16(3):435-9. PubMed ID: 12680706
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bactericidal activity of a superoxide anion-generating system. A model for the polymorphonuclear leukocyte.
    Rosen H; Klebanoff SJ
    J Exp Med; 1979 Jan; 149(1):27-39. PubMed ID: 216766
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cobalt(II) ion as a promoter of hydroxyl radical and possible 'crypto-hydroxyl' radical formation under physiological conditions. Differential effects of hydroxyl radical scavengers.
    Moorhouse CP; Halliwell B; Grootveld M; Gutteridge JM
    Biochim Biophys Acta; 1985 Dec; 843(3):261-8. PubMed ID: 2998477
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Uric acid as radical scavenger and antioxidant in the heart.
    Becker BF; Reinholz N; Ozçelik T; Leipert B; Gerlach E
    Pflugers Arch; 1989 Nov; 415(2):127-35. PubMed ID: 2556684
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inactivation of mitochondrial adenosine triphosphatase from Trypanosoma cruzi by oxygen radicals.
    Cataldi de Flombaum MA; Stoppani AO
    Biochem Int; 1986 Jun; 12(6):785-93. PubMed ID: 3017349
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The production of activated oxygen species by an interaction of methemoglobin with ascorbate.
    Benatti U; Morelli A; Guida L; De Flora A
    Biochem Biophys Res Commun; 1983 Mar; 111(3):980-7. PubMed ID: 6301495
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Production of hydroxyl radical by iron(III)-anthraquinone complexes through self-reduction and through reductive activation by the xanthine oxidase/hypoxanthine system.
    Malisza KL; Hasinoff BB
    Arch Biochem Biophys; 1995 Aug; 321(1):51-60. PubMed ID: 7639535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.