These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 2538353)

  • 61. The effect of pH on the conversion of superoxide to hydroxyl free radicals.
    Baker MS; Gebicki JM
    Arch Biochem Biophys; 1984 Oct; 234(1):258-64. PubMed ID: 6091565
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Hydroxyl radical production in body fluids. Roles of metal ions, ascorbate and superoxide.
    Winterbourn CC
    Biochem J; 1981 Jul; 198(1):125-31. PubMed ID: 6275837
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effect of synthetic protease inhibitors on superoxide (O2-), hydrogen peroxide (H2O2) and hydroxyl radical production by human polymorphonuclear leukocytes.
    Tamura K; Manabe T; Imanishi K; Nonaka A; Asano N; Yamaki K; Tobe T
    Hepatogastroenterology; 1992 Feb; 39(1):59-61. PubMed ID: 1314767
    [TBL] [Abstract][Full Text] [Related]  

  • 64. DNA damage by superoxide-generating systems in relation to the mechanism of action of the anti-tumour antibiotic adriamycin.
    Rowley DA; Halliwell B
    Biochim Biophys Acta; 1983 Nov; 761(1):86-93. PubMed ID: 6315070
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Hydroxyl radicals do not crosslink a DNA-lysozyme complex.
    Werbin H; Cheng CJ
    Carcinogenesis; 1985 Dec; 6(12):1689-91. PubMed ID: 2998638
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Light-stimulated formation of hydrogen peroxide and hydroxyl radical in the presence of uroporphyrin and ascorbate.
    Bachowski GJ; Girotti AW
    Free Radic Biol Med; 1988; 5(1):3-6. PubMed ID: 2855416
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Biologically significant scavenging of the myeloperoxidase-derived oxidant hypochlorous acid by ascorbic acid. Implications for antioxidant protection in the inflamed rheumatoid joint.
    Halliwell B; Wasil M; Grootveld M
    FEBS Lett; 1987 Mar; 213(1):15-7. PubMed ID: 3030805
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Radical intermediates involved in the bleaching of the carotenoid crocin. Hydroxyl radicals, superoxide anions and hydrated electrons.
    Bors W; Saran M; Michel C
    Int J Radiat Biol Relat Stud Phys Chem Med; 1982 May; 41(5):493-501. PubMed ID: 6284671
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Antiinflammatory drugs: protection of a bacterial virus as an in vitro biological measure of free radical activity.
    Hiller KO; Hodd PL; Willson RL
    Chem Biol Interact; 1983 Dec; 47(3):293-305. PubMed ID: 6317211
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A pulse-radiolysis study of the catalytic mechanism of the iron-containing superoxide dismutase from Photobacterium leiognathi.
    Lavelle F; McAdam ME; Fielden EM; Roberts PB
    Biochem J; 1977 Jan; 161(1):3-11. PubMed ID: 15540
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Protective effect of seminal plasma proteins on the degradation of ascorbic acid.
    Liu L; Dabrowski K; Ciereszko A
    Mol Cell Biochem; 1995 Jul; 148(1):59-66. PubMed ID: 7476934
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Heparin: does it act as an antioxidant in vivo?
    Lapenna D; Mezzetti A; de Gioia S; Ciofani G; Marzio L; Di Ilio C; Cuccurullo F
    Biochem Pharmacol; 1992 Jul; 44(1):188-91. PubMed ID: 1321628
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Reactivities of diphenylfuran (a singlet oxygen trap) with singlet oxygen and hydroxyl radical in aqueous systems.
    Takayama K; Noguchi T; Nakano M
    Biochem Biophys Res Commun; 1977 Apr; 75(4):1052-8. PubMed ID: 405009
    [No Abstract]   [Full Text] [Related]  

  • 74. Different selectivities of oxidants during oxidation of methionine residues in the alpha-1-proteinase inhibitor.
    Maier KL; Matejkova E; Hinze H; Leuschel L; Weber H; Beck-Speier I
    FEBS Lett; 1989 Jul; 250(2):221-6. PubMed ID: 2546797
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Formation of hydroxyl radicals and Co3+ in the reaction of Co(2+)-EDTA with hydrogen peroxide. Catalytic effect of Fe3+.
    Eberhardt MK; Santos C; Soto MA
    Biochim Biophys Acta; 1993 May; 1157(1):102-6. PubMed ID: 8388729
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [Is xanthine oxidase a universal source of superoxide radicals in ischemic and reperfusion lesions?].
    Rashba IuE; Nagler LG; Vartanian LS; Oktiabr'skaia LA; Bilenko MV
    Biull Eksp Biol Med; 1990 Jun; 109(6):548-50. PubMed ID: 2168771
    [TBL] [Abstract][Full Text] [Related]  

  • 77. New cofactors and inhibitors for a DNA-cleaving DNAzyme: superoxide anion and hydrogen peroxide mediated an oxidative cleavage process.
    Sun Y; Ma R; Wang S; Li G; Sheng Y; Rui H; Zhang J; Xu J; Jiang D
    Sci Rep; 2017 Mar; 7(1):378. PubMed ID: 28336968
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Copper-ligand interactions and physiological free radical processes. pH-dependent influence of Cu2+ ions on Fe2(+)-driven OH. generation.
    Maestre P; Lambs L; Thouvenot JP; Berthon G
    Free Radic Res Commun; 1992; 15(6):305-17. PubMed ID: 1314758
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Virus-inactivating effect of D-isoascorbic acid.
    Murata A; Kawasaki M; Motomatsu H; Kato F
    J Nutr Sci Vitaminol (Tokyo); 1986 Dec; 32(6):559-67. PubMed ID: 3035150
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effect of ascorbic acid on neutrophil functions and hypoxanthine/xanthine oxidase-generated, oxygen-derived radicals.
    Dwenger A; Funck M; Lueken B; Schweitzer G; Lehmann U
    Eur J Clin Chem Clin Biochem; 1992 Apr; 30(4):187-91. PubMed ID: 1525246
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.