BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 25383912)

  • 1. Small-molecule detection in thiol-yne nanocomposites via surface-enhanced Raman spectroscopy.
    Boyd DA; Bezares FJ; Pacardo DB; Ukaegbu M; Hosten C; Ligler FS
    Anal Chem; 2014 Dec; 86(24):12315-20. PubMed ID: 25383912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Br(-)-induced facile fabrication of spongelike gold/amino acid nanocomposites and their applications in surface-enhanced Raman scattering.
    Liu Y; Liu L; Guo R
    Langmuir; 2010 Aug; 26(16):13479-85. PubMed ID: 20695594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of gold nanoparticles-agarose gel composite and its application in SERS detection.
    Ma X; Xia Y; Ni L; Song L; Wang Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():657-61. PubMed ID: 24368285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Surface-enhanced Raman spectroscopic studies on the thiophenol adsorbed on novel Ag-Au alloy nanoparticles].
    Wang M; Yao JL; Gu RA
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Jun; 27(6):1136-9. PubMed ID: 17763776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The synthesis of biocompatible and SERS-active gold nanoparticles using chitosan.
    Potara M; Maniu D; Astilean S
    Nanotechnology; 2009 Aug; 20(31):315602. PubMed ID: 19597258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates.
    Zhong LB; Yin J; Zheng YM; Liu Q; Cheng XX; Luo FH
    Anal Chem; 2014 Jul; 86(13):6262-7. PubMed ID: 24873535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implementation of molecularly imprinted polymer beads for surface enhanced Raman detection.
    Kamra T; Zhou T; Montelius L; Schnadt J; Ye L
    Anal Chem; 2015; 87(10):5056-61. PubMed ID: 25897989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate.
    Ngo YH; Li D; Simon GP; Garnier G
    Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of bifunctional gold/gelatin hybrid nanocomposites and their application.
    Cui Q; Yashchenok A; Zhang L; Li L; Masic A; Wienskol G; Möhwald H; Bargheer M
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1999-2002. PubMed ID: 24405092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel glucose biosensor platform based on Ag@AuNPs modified graphene oxide nanocomposite and SERS application.
    Gupta VK; Atar N; Yola ML; Eryılmaz M; Torul H; Tamer U; Boyacı IH; Ustündağ Z
    J Colloid Interface Sci; 2013 Sep; 406():231-7. PubMed ID: 23816220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly sensitive immunoassay based on SERS using nano-Au immune probes and a nano-Ag immune substrate.
    Shu L; Zhou J; Yuan X; Petti L; Chen J; Jia Z; Mormile P
    Talanta; 2014 Jun; 123():161-8. PubMed ID: 24725879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailored polymer-metal fractal nanocomposites: an approach to highly active surface enhanced Raman scattering substrates.
    Biswas A; Bayer IS; Dahanayaka DH; Bumm LA; Li Z; Watanabe F; Sharma R; Xu Y; Biris AS; Norton MG; Suhir E
    Nanotechnology; 2009 Aug; 20(32):325705. PubMed ID: 19620750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and evaluation of nanocellulose-gold nanoparticle nanocomposites for SERS applications.
    Wei H; Rodriguez K; Renneckar S; Leng W; Vikesland PJ
    Analyst; 2015 Aug; 140(16):5640-9. PubMed ID: 26133311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Study of the factors effecting surface-enhanced Raman scattering reporter-labeled immunogold colloids].
    Li SJ; Qiu LQ; Cao PG; Gu RA
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Dec; 24(12):1575-8. PubMed ID: 15828331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and characterization of homogeneous surface-enhanced Raman scattering substrates by single pulse UV-laser treatment of gold and silver films.
    Christou K; Knorr I; Ihlemann J; Wackerbarth H; Beushausen V
    Langmuir; 2010 Dec; 26(23):18564-9. PubMed ID: 21043441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized immobilization of gold nanoparticles on planar surfaces through alkyldithiols and their use to build 3D biosensors.
    Morel AL; Volmant RM; Méthivier C; Krafft JM; Boujday S; Pradier CM
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):304-12. PubMed ID: 20692817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly and encoding of polymer-stabilized gold nanoparticles with surface-enhanced Raman reporter molecules.
    Merican Z; Schiller TL; Hawker CJ; Fredericks PM; Blakey I
    Langmuir; 2007 Oct; 23(21):10539-45. PubMed ID: 17824719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymer nanopillar-gold arrays as surface-enhanced Raman spectroscopy substrate for the simultaneous detection of multiple genes.
    Picciolini S; Mehn D; Morasso C; Vanna R; Bedoni M; Pellacani P; Marchesini G; Valsesia A; Prosperi D; Tresoldi C; Ciceri F; Gramatica F
    ACS Nano; 2014 Oct; 8(10):10496-506. PubMed ID: 25280123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific behavior of the p-aminothiophenol--silver sol system in their Ultra-Violet-Visible (UV-Visible) and Surface Enhanced Raman (SERS) spectra.
    Firkala T; Tálas E; Mihály J; Imre T; Kristyán S
    J Colloid Interface Sci; 2013 Nov; 410():59-66. PubMed ID: 24034220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.