BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 25384358)

  • 1. Carbon coated MnO@Mn3N2 core-shell composites for high performance lithium ion battery anodes.
    Wu Y; Liu M; Feng H; Li J
    Nanoscale; 2014 Dec; 6(24):14697-701. PubMed ID: 25384358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MnO@carbon core-shell nanowires as stable high-performance anodes for lithium-ion batteries.
    Li X; Xiong S; Li J; Liang X; Wang J; Bai J; Qian Y
    Chemistry; 2013 Aug; 19(34):11310-9. PubMed ID: 23843271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon-coated Fe-Mn-O composites as promising anode materials for lithium-ion batteries.
    Li T; Wang YY; Tang R; Qi YX; Lun N; Bai YJ; Fan RH
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9470-7. PubMed ID: 24007324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MnO nanoparticles embedded in a carbon matrix as high performance lithium-ion battery anodes: preparation, microstructure and electrochemistry.
    Ma S; Chen D; Wang WL
    Phys Chem Chem Phys; 2016 Jul; 18(28):19130-6. PubMed ID: 27356487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile synthesis of one-dimensional Mn₃O₄/Zn₂SnO₄ hybrid composites and their high performance as anodes for LIBs.
    Zhang R; He Y; Li A; Xu L
    Nanoscale; 2014 Nov; 6(23):14221-6. PubMed ID: 25195654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering hybrid between MnO and N-doped carbon to achieve exceptionally high capacity for lithium-ion battery anode.
    Xiao Y; Wang X; Wang W; Zhao D; Cao M
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):2051-8. PubMed ID: 24410006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MnO octahedral nanocrystals and MnO@C core-shell composites: synthesis, characterization, and electrocatalytic properties.
    Shanmugam S; Gedanken A
    J Phys Chem B; 2006 Dec; 110(48):24486-91. PubMed ID: 17134206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indirect growth of mesoporous Bi@C core-shell nanowires for enhanced lithium-ion storage.
    Dai R; Wang Y; Da P; Wu H; Xu M; Zheng G
    Nanoscale; 2014 Nov; 6(21):13236-41. PubMed ID: 25260037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ carbon-coated yolk-shell V2O3 microspheres for lithium-ion batteries.
    Jiang L; Qu Y; Ren Z; Yu P; Zhao D; Zhou W; Wang L; Fu H
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1595-601. PubMed ID: 25569599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile synthesis of hierarchical micro/nanostructured MnO material and its excellent lithium storage property and high performance as anode in a MnO/LiNi0.5Mn1.5O(4-δ) lithium ion battery.
    Xu GL; Xu YF; Fang JC; Fu F; Sun H; Huang L; Yang S; Sun SG
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):6316-23. PubMed ID: 23758592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Electromagnetic Microwave Absorption Property of Peapod-like MnO@carbon Nanowires.
    Duan Y; Xiao Z; Yan X; Gao Z; Tang Y; Hou L; Li Q; Ning G; Li Y
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):40078-40087. PubMed ID: 30379515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-Yolk-Shell MnO@Carbon Nanopomegranates with Internal Buffer Space as a Lithium Ion Battery Anode.
    Liu Y; Sun S; Han J; Gao C; Fan L; Guo R
    Langmuir; 2021 Feb; 37(6):2195-2204. PubMed ID: 33533622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tin dioxide@carbon core-shell nanoarchitectures anchored on wrinkled graphene for ultrafast and stable lithium storage.
    Zhou X; Liu W; Yu X; Liu Y; Fang Y; Klankowski S; Yang Y; Brown JE; Li J
    ACS Appl Mater Interfaces; 2014 May; 6(10):7434-43. PubMed ID: 24784816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life li-ion batteries.
    Jiang H; Hu Y; Guo S; Yan C; Lee PS; Li C
    ACS Nano; 2014 Jun; 8(6):6038-46. PubMed ID: 24842575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced electrochemical performance of a ZnO-MnO composite as an anode material for lithium ion batteries.
    Song MS; Nahm S; Cho WI; Lee C
    Phys Chem Chem Phys; 2015 Sep; 17(36):23496-502. PubMed ID: 26293115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MnO nanoparticle@mesoporous carbon composites grown on conducting substrates featuring high-performance lithium-ion battery, supercapacitor and sensor.
    Wang T; Peng Z; Wang Y; Tang J; Zheng G
    Sci Rep; 2013; 3():2693. PubMed ID: 24045767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Core-shell Si/C nanospheres embedded in bubble sheet-like carbon film with enhanced performance as lithium ion battery anodes.
    Li W; Tang Y; Kang W; Zhang Z; Yang X; Zhu Y; Zhang W; Lee CS
    Small; 2015 Mar; 11(11):1345-51. PubMed ID: 25346141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An interwoven network of MnO₂ nanowires and carbon nanotubes as the anode for bendable lithium-ion batteries.
    Ee SJ; Pang H; Mani U; Yan Q; Ting SL; Chen P
    Chemphyschem; 2014 Aug; 15(12):2445-9. PubMed ID: 24888436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hollow 0.3Li2MnO3·0.7LiNi(0.5)Mn(0.5)O2 microspheres as a high-performance cathode material for lithium-ion batteries.
    Jiang Y; Yang Z; Luo W; Hu X; Huang Y
    Phys Chem Chem Phys; 2013 Feb; 15(8):2954-60. PubMed ID: 23340597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of core/shell spinel ferrite/carbon nanoparticles with enhanced cycling stability for lithium ion battery anodes.
    Jin YH; Seo SD; Shim HW; Park KS; Kim DW
    Nanotechnology; 2012 Mar; 23(12):125402. PubMed ID: 22414887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.