These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 25384386)

  • 41. Extraction Method Development for Quantitative Detection of Silver Nanoparticles in Environmental Soils and Sediments by Single Particle Inductively Coupled Plasma Mass Spectrometry.
    Li L; Wang Q; Yang Y; Luo L; Ding R; Yang ZG; Li HP
    Anal Chem; 2019 Aug; 91(15):9442-9450. PubMed ID: 31248253
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Detection of Engineered Copper Nanoparticles in Soil Using Single Particle ICP-MS.
    Navratilova J; Praetorius A; Gondikas A; Fabienke W; von der Kammer F; Hofmann T
    Int J Environ Res Public Health; 2015 Dec; 12(12):15756-68. PubMed ID: 26690460
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Review: Do engineered nanoparticles pose a significant threat to the aquatic environment?
    Scown TM; van Aerle R; Tyler CR
    Crit Rev Toxicol; 2010 Aug; 40(7):653-70. PubMed ID: 20662713
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Addressing the complexity of water chemistry in environmental fate modeling for engineered nanoparticles.
    Sani-Kast N; Scheringer M; Slomberg D; Labille J; Praetorius A; Ollivier P; Hungerbühler K
    Sci Total Environ; 2015 Dec; 535():150-9. PubMed ID: 25636351
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genotoxic and carcinogenic potential of engineered nanoparticles: an update.
    Kumar A; Dhawan A
    Arch Toxicol; 2013 Nov; 87(11):1883-1900. PubMed ID: 24068037
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interactions between engineered nanoparticles and dissolved organic matter: A review on mechanisms and environmental effects.
    Yu S; Liu J; Yin Y; Shen M
    J Environ Sci (China); 2018 Jan; 63():198-217. PubMed ID: 29406103
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Facing complexity through informed simplifications: a research agenda for aquatic exposure assessment of nanoparticles.
    Praetorius A; Arvidsson R; Molander S; Scheringer M
    Environ Sci Process Impacts; 2013 Jan; 15(1):161-8. PubMed ID: 24592434
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Visualization and analysis of nanoparticle transport and ageing in reactive porous media.
    Naftaly A; Edery Y; Dror I; Berkowitz B
    J Hazard Mater; 2015 Dec; 299():513-9. PubMed ID: 26252995
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enzyme nanoparticles and their biosensing applications: A review.
    Neelam ; Chhillar AK; Rana JS
    Anal Biochem; 2019 Sep; 581():113345. PubMed ID: 31251924
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The influence of natural organic matter and aging on suspension stability in guideline toxicity testing of silver, zinc oxide, and titanium dioxide nanoparticles with Daphnia magna.
    Cupi D; Hartmann NB; Baun A
    Environ Toxicol Chem; 2015 Mar; 34(3):497-506. PubMed ID: 25546145
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles.
    Hassellöv M; Readman JW; Ranville JF; Tiede K
    Ecotoxicology; 2008 Jul; 17(5):344-61. PubMed ID: 18483764
    [TBL] [Abstract][Full Text] [Related]  

  • 52. ICP-MS-based characterization of inorganic nanoparticles--sample preparation and off-line fractionation strategies.
    Fabricius AL; Duester L; Meermann B; Ternes TA
    Anal Bioanal Chem; 2014 Jan; 406(2):467-79. PubMed ID: 24292431
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fate assessment of engineered nanoparticles in solids dominated media - Current insights and the way forward.
    Peijnenburg W; Praetorius A; Scott-Fordsmand J; Cornelis G
    Environ Pollut; 2016 Nov; 218():1365-1369. PubMed ID: 26794339
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effects of engineered nanoparticles on survival, reproduction, and behaviour of freshwater snail, Physa acuta (Draparnaud, 1805).
    Musee N; Oberholster PJ; Sikhwivhilu L; Botha AM
    Chemosphere; 2010 Nov; 81(10):1196-203. PubMed ID: 20943245
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nanoparticles in the environment: stability and toxicity.
    Kim HA; Choi YJ; Kim KW; Lee BT; Ranville JF
    Rev Environ Health; 2012 Sep; 27(4):175-9. PubMed ID: 22962197
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes.
    Domingos RF; Baalousha MA; Ju-Nam Y; Reid MM; Tufenkji N; Lead JR; Leppard GG; Wilkinson KJ
    Environ Sci Technol; 2009 Oct; 43(19):7277-84. PubMed ID: 19848134
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation.
    Ma X; Geisler-Lee J; Deng Y; Kolmakov A
    Sci Total Environ; 2010 Jul; 408(16):3053-61. PubMed ID: 20435342
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Engineered nanoparticles at the workplace: current knowledge about workers' risk.
    Pietroiusti A; Magrini A
    Occup Med (Lond); 2014 Jul; 64(5):319-30. PubMed ID: 25005544
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Engineered inorganic nanoparticles and cosmetics: facts, issues, knowledge gaps and challenges.
    Wiechers JW; Musee N
    J Biomed Nanotechnol; 2010 Oct; 6(5):408-31. PubMed ID: 21329039
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interactions of metal-based engineered nanoparticles with aquatic higher plants: A review of the state of current knowledge.
    Thwala M; Klaine SJ; Musee N
    Environ Toxicol Chem; 2016 Jul; 35(7):1677-94. PubMed ID: 26757140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.