These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
353 related articles for article (PubMed ID: 25384392)
1. Tau deletion impairs intracellular β-amyloid-42 clearance and leads to more extracellular plaque deposition in gene transfer models. Lonskaya I; Hebron M; Chen W; Schachter J; Moussa C Mol Neurodegener; 2014 Nov; 9():46. PubMed ID: 25384392 [TBL] [Abstract][Full Text] [Related]
2. Diminished parkin solubility and co-localization with intraneuronal amyloid-β are associated with autophagic defects in Alzheimer's disease. Lonskaya I; Shekoyan AR; Hebron ML; Desforges N; Algarzae NK; Moussa CE J Alzheimers Dis; 2013; 33(1):231-47. PubMed ID: 22954671 [TBL] [Abstract][Full Text] [Related]
3. NDP52 associates with phosphorylated tau in brains of an Alzheimer disease mouse model. Kim S; Lee D; Song JC; Cho SJ; Yun SM; Koh YH; Song J; Johnson GV; Jo C Biochem Biophys Res Commun; 2014 Nov; 454(1):196-201. PubMed ID: 25450380 [TBL] [Abstract][Full Text] [Related]
4. Genetically augmenting tau levels does not modulate the onset or progression of Abeta pathology in transgenic mice. Oddo S; Caccamo A; Cheng D; Jouleh B; Torp R; LaFerla FM J Neurochem; 2007 Aug; 102(4):1053-63. PubMed ID: 17472708 [TBL] [Abstract][Full Text] [Related]
5. Effects of the superoxide dismutase/catalase mimetic EUK-207 in a mouse model of Alzheimer's disease: protection against and interruption of progression of amyloid and tau pathology and cognitive decline. Clausen A; Xu X; Bi X; Baudry M J Alzheimers Dis; 2012; 30(1):183-208. PubMed ID: 22406441 [TBL] [Abstract][Full Text] [Related]
8. Tau pathogenesis is promoted by Aβ1-42 but not Aβ1-40. Hu X; Li X; Zhao M; Gottesdiener A; Luo W; Paul S Mol Neurodegener; 2014 Nov; 9():52. PubMed ID: 25417177 [TBL] [Abstract][Full Text] [Related]
9. Beta-amyloid 1-42 monomers, but not oligomers, produce PHF-like conformation of Tau protein. Manassero G; Guglielmotto M; Zamfir R; Borghi R; Colombo L; Salmona M; Perry G; Odetti P; Arancio O; Tamagno E; Tabaton M Aging Cell; 2016 Oct; 15(5):914-23. PubMed ID: 27406053 [TBL] [Abstract][Full Text] [Related]
10. Inhibitor Kappa B Kinase β, Modulated by DJ-1/p-VHL, Reduces Phosphorylated Tau (p-Tau) Accumulation via Autophagy in Alzheimer's Disease Model. Chen WP; Zhang G; Cheng ZJ; Gu XH; Li M; Liu X Neuroscience; 2021 Jan; 452():1-12. PubMed ID: 33069779 [TBL] [Abstract][Full Text] [Related]
11. Selective cytotoxicity of intracellular amyloid beta peptide1-42 through p53 and Bax in cultured primary human neurons. Zhang Y; McLaughlin R; Goodyer C; LeBlanc A J Cell Biol; 2002 Feb; 156(3):519-29. PubMed ID: 11815632 [TBL] [Abstract][Full Text] [Related]
12. Parkin null cortical neuronal/glial cultures are resistant to amyloid-β1-42 toxicity: a role for autophagy? Solano RM; Casarejos MJ; Gómez A; Perucho J; de Yébenes JG; Mena MA J Alzheimers Dis; 2012; 32(1):57-76. PubMed ID: 22785397 [TBL] [Abstract][Full Text] [Related]
13. Amyloid precursor protein cytoplasmic domain with phospho-Thr668 accumulates in Alzheimer's disease and its transgenic models: a role to mediate interaction of Abeta and tau. Shin RW; Ogino K; Shimabuku A; Taki T; Nakashima H; Ishihara T; Kitamoto T Acta Neuropathol; 2007 Jun; 113(6):627-36. PubMed ID: 17431643 [TBL] [Abstract][Full Text] [Related]
14. Fractalkine signaling and Tau hyper-phosphorylation are associated with autophagic alterations in lentiviral Tau and Aβ1-42 gene transfer models. Hebron ML; Algarzae NK; Lonskaya I; Moussa C Exp Neurol; 2014 Jan; 251():127-38. PubMed ID: 23333589 [TBL] [Abstract][Full Text] [Related]
15. Neuropep-1 ameliorates learning and memory deficits in an Alzheimer's disease mouse model, increases brain-derived neurotrophic factor expression in the brain, and causes reduction of amyloid beta plaques. Shin MK; Kim HG; Baek SH; Jung WR; Park DI; Park JS; Jo DG; Kim KL Neurobiol Aging; 2014 May; 35(5):990-1001. PubMed ID: 24268884 [TBL] [Abstract][Full Text] [Related]
16. Accumulation of amyloid-like Aβ1-42 in AEL (autophagy-endosomal-lysosomal) vesicles: potential implications for plaque biogenesis. Ling D; Magallanes M; Salvaterra PM ASN Neuro; 2014 Mar; 6(2):. PubMed ID: 24521233 [TBL] [Abstract][Full Text] [Related]
17. Tau reduction prevents Aβ-induced axonal transport deficits by blocking activation of GSK3β. Vossel KA; Xu JC; Fomenko V; Miyamoto T; Suberbielle E; Knox JA; Ho K; Kim DH; Yu GQ; Mucke L J Cell Biol; 2015 May; 209(3):419-33. PubMed ID: 25963821 [TBL] [Abstract][Full Text] [Related]
18. Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Oddo S; Billings L; Kesslak JP; Cribbs DH; LaFerla FM Neuron; 2004 Aug; 43(3):321-32. PubMed ID: 15294141 [TBL] [Abstract][Full Text] [Related]
19. Biochemical stages of amyloid-β peptide aggregation and accumulation in the human brain and their association with symptomatic and pathologically preclinical Alzheimer's disease. Rijal Upadhaya A; Kosterin I; Kumar S; von Arnim CA; Yamaguchi H; Fändrich M; Walter J; Thal DR Brain; 2014 Mar; 137(Pt 3):887-903. PubMed ID: 24519982 [TBL] [Abstract][Full Text] [Related]
20. Power tools for Alzheimer's disease - an electrochemical preamp for Aβ. Zetterberg H; Hammarström P J Neurochem; 2012 Jul; 122(2):231-2. PubMed ID: 22409410 [No Abstract] [Full Text] [Related] [Next] [New Search]