These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 25384522)

  • 1. A short-range ordered-disordered transition of a NiOOH/Ni(OH)2 pair induces switchable wettability.
    Chang YH; Hau NY; Liu C; Huang YT; Li CC; Shih K; Feng SP
    Nanoscale; 2014 Dec; 6(24):15309-15. PubMed ID: 25384522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversibly switchable wettability.
    Xin B; Hao J
    Chem Soc Rev; 2010 Feb; 39(2):769-82. PubMed ID: 20111792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface configuration and wettability of nickel(oxy)hydroxides: a first-principles investigation.
    Eslamibidgoli MJ; Groß A; Eikerling M
    Phys Chem Chem Phys; 2017 Aug; 19(34):22659-22669. PubMed ID: 28796270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoreversibly switchable superhydrophobic surface with erasable and rewritable pattern.
    Lim HS; Han JT; Kwak D; Jin M; Cho K
    J Am Chem Soc; 2006 Nov; 128(45):14458-9. PubMed ID: 17090019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-Responsive, Femtosecond Laser-Ablated Ceramic Surfaces with Switchable Wettability for On-Demand Droplet Transfer.
    Zheng J; Yang B; Wang H; Zhou L; Zhang Z; Zhou Z
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):13740-13752. PubMed ID: 36857747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversibly photo-switchable wettability of stearic acid monolayer modified bismuth-based micro-/nanomaterials.
    Yang H; Hu X; Su C; Liu Y; Chen R
    Phys Chem Chem Phys; 2017 Dec; 19(47):31666-31674. PubMed ID: 29165490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinspired patterning with extreme wettability contrast on TiO2 nanotube array surface: a versatile platform for biomedical applications.
    Lai Y; Lin L; Pan F; Huang J; Song R; Huang Y; Lin C; Fuchs H; Chi L
    Small; 2013 Sep; 9(17):2945-53. PubMed ID: 23420792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen.
    Louie MW; Bell AT
    J Am Chem Soc; 2013 Aug; 135(33):12329-37. PubMed ID: 23859025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel reversibly switchable wettability of superhydrophobic-superhydrophilic surfaces induced by charge injection and heating.
    Ye X; Hou J; Cai D
    Beilstein J Nanotechnol; 2019; 10():840-847. PubMed ID: 31019871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UVO-tunable superhydrophobic to superhydrophilic wetting transition on biomimetic nanostructured surfaces.
    Han JT; Kim S; Karim A
    Langmuir; 2007 Feb; 23(5):2608-14. PubMed ID: 17269808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Black Silicon/Elastomer Composite Surface with Switchable Wettability and Adhesion between Lotus and Rose Petal Effects by Mechanical Strain.
    Park JK; Yang Z; Kim S
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):33333-33340. PubMed ID: 28901732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of functional polymer surfaces with controlled wettability.
    Anastasiadis SH
    Langmuir; 2013 Jul; 29(30):9277-90. PubMed ID: 23789943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ordered Micro/Nanostructures with Geometric Gradient: From Integrated Wettability "Library" to Anisotropic Wetting Surface.
    Xue P; Nan J; Wang T; Wang S; Ye S; Zhang J; Cui Z; Yang B
    Small; 2017 Jan; 13(4):. PubMed ID: 27886449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Switchable wettability on cooperative dual-responsive poly-L-lysine surface.
    Guo Y; Xia F; Xu L; Li J; Yang W; Jiang L
    Langmuir; 2010 Jan; 26(2):1024-8. PubMed ID: 20030299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superhydrophobic TiO2-polymer nanocomposite surface with UV-induced reversible wettability and self-cleaning properties.
    Xu QF; Liu Y; Lin FJ; Mondal B; Lyons AM
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):8915-24. PubMed ID: 23889192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films.
    Aytug T; Simpson JT; Lupini AR; Trejo RM; Jellison GE; Ivanov IN; Pennycook SJ; Hillesheim DA; Winter KO; Christen DK; Hunter SR; Haynes JA
    Nanotechnology; 2013 Aug; 24(31):315602. PubMed ID: 23857991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potentiostatic reversible photoelectrochromism: an effect appearing in nanoporous TiO2/Ni(OH)2 thin films.
    Cibrev D; Jankulovska M; Lana-Villarreal T; Gómez R
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10304-12. PubMed ID: 24926989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible superhydrophobicity to superhydrophilicity switching of a carbon nanotube film via alternation of UV irradiation and dark storage.
    Yang J; Zhang Z; Men X; Xu X; Zhu X
    Langmuir; 2010 Jun; 26(12):10198-202. PubMed ID: 20394384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physico-chemical processes and kinetics of sunlight-induced hydrophobic ↔ superhydrophilic switching of transparent N-doped TiO₂ thin films.
    Sahoo M; Mathews T; Antony RP; Krishna DN; Dash S; Tyagi AK
    ACS Appl Mater Interfaces; 2013 May; 5(9):3967-74. PubMed ID: 23591141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transparent surface with reversibly switchable wettability between superhydrophobicity and superhydrophilicity.
    Hua Z; Yang J; Wang T; Liu G; Zhang G
    Langmuir; 2013 Aug; 29(33):10307-12. PubMed ID: 23915149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.