BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 25384896)

  • 1. Air sparging for prevention of antibody disulfide bond reduction in harvested CHO cell culture fluid.
    Mun M; Khoo S; Do Minh A; Dvornicky J; Trexler-Schmidt M; Kao YH; Laird MW
    Biotechnol Bioeng; 2015 Apr; 112(4):734-42. PubMed ID: 25384896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and prevention of antibody disulfide bond reduction during cell culture manufacturing.
    Trexler-Schmidt M; Sargis S; Chiu J; Sze-Khoo S; Mun M; Kao YH; Laird MW
    Biotechnol Bioeng; 2010 Jun; 106(3):452-61. PubMed ID: 20178122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of antibody reduction in cell culture production processes.
    Kao YH; Hewitt DP; Trexler-Schmidt M; Laird MW
    Biotechnol Bioeng; 2010 Nov; 107(4):622-32. PubMed ID: 20589844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of antibody disulfide bond reduction on purification process performance and final drug substance stability.
    Chung WK; Russell B; Yang Y; Handlogten M; Hudak S; Cao M; Wang J; Robbins D; Ahuja S; Zhu M
    Biotechnol Bioeng; 2017 Jun; 114(6):1264-1274. PubMed ID: 28186329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of depth filtration on disulfide bond reduction during downstream processing of monoclonal antibodies from CHO cell cultures.
    O'Mara B; Gao ZH; Kuruganti M; Mallett R; Nayar G; Smith L; Meyer JD; Therriault J; Miller C; Cisney J; Fann J
    Biotechnol Bioeng; 2019 Jul; 116(7):1669-1683. PubMed ID: 30883673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using hydrogen peroxide to prevent antibody disulfide bond reduction during manufacturing process.
    Du C; Huang Y; Borwankar A; Tan Z; Cura A; Yee JC; Singh N; Ludwig R; Borys M; Ghose S; Mussa N; Li ZJ
    MAbs; 2018 Apr; 10(3):500-510. PubMed ID: 29336721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Untargeted proteomics reveals upregulation of stress response pathways during CHO-based monoclonal antibody manufacturing process leading to disulfide bond reduction.
    Park SY; Egan S; Cura AJ; Aron KL; Xu X; Zheng M; Borys M; Ghose S; Li Z; Lee K
    MAbs; 2021; 13(1):1963094. PubMed ID: 34424810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic understanding of disulfide reduction during monoclonal antibody production.
    Cura AJ; Xu X; Egan S; Aron K; Jenkins L; Hageman T; Huang Y; Chollangi S; Borys M; Ghose S; Li ZJ
    Appl Microbiol Biotechnol; 2020 Nov; 104(22):9655-9669. PubMed ID: 32997205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thioredoxin 1 is responsible for antibody disulfide reduction in CHO cell culture.
    Koterba KL; Borgschulte T; Laird MW
    J Biotechnol; 2012 Jan; 157(1):261-7. PubMed ID: 22138638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of ambient light on monoclonal antibody product quality during small-scale mammalian cell culture process in clear glass bioreactors.
    Mallaney M; Wang SH; Sreedhara A
    Biotechnol Prog; 2014; 30(3):562-70. PubMed ID: 24777986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of glutamine and asparagine on recombinant antibody production using CHO-GS cell lines.
    Xu P; Dai XP; Graf E; Martel R; Russell R
    Biotechnol Prog; 2014; 30(6):1457-68. PubMed ID: 25079388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Online control of cell culture redox potential prevents antibody interchain disulfide bond reduction.
    Handlogten MW; Wang J; Ahuja S
    Biotechnol Bioeng; 2020 May; 117(5):1329-1336. PubMed ID: 31956991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of antibody disulfide reduction and re-oxidation and impact to biological activities.
    Wang T; Liu YD; Cai B; Huang G; Flynn GC
    J Pharm Biomed Anal; 2015 Jan; 102():519-28. PubMed ID: 25459952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutathione and thioredoxin systems contribute to recombinant monoclonal antibody interchain disulfide bond reduction during bioprocessing.
    Handlogten MW; Zhu M; Ahuja S
    Biotechnol Bioeng; 2017 Jul; 114(7):1469-1477. PubMed ID: 28262915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular response to process optimization and impact on productivity and product aggregates for a high-titer CHO cell process.
    Handlogten MW; Lee-O'Brien A; Roy G; Levitskaya SV; Venkat R; Singh S; Ahuja S
    Biotechnol Bioeng; 2018 Jan; 115(1):126-138. PubMed ID: 28941283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benchmarking of commercially available CHO cell culture media for antibody production.
    Reinhart D; Damjanovic L; Kaisermayer C; Kunert R
    Appl Microbiol Biotechnol; 2015 Jun; 99(11):4645-57. PubMed ID: 25846330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scale-up analysis for a CHO cell culture process in large-scale bioreactors.
    Xing Z; Kenty BM; Li ZJ; Lee SS
    Biotechnol Bioeng; 2009 Jul; 103(4):733-46. PubMed ID: 19280669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of inducible co-overexpression of protein disulfide isomerase and endoplasmic reticulum oxidoreductase on the specific antibody productivity of recombinant Chinese hamster ovary cells.
    Mohan C; Lee GM
    Biotechnol Bioeng; 2010 Oct; 107(2):337-46. PubMed ID: 20506311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A predictive high-throughput scale-down model of monoclonal antibody production in CHO cells.
    Legmann R; Schreyer HB; Combs RG; McCormick EL; Russo AP; Rodgers ST
    Biotechnol Bioeng; 2009 Dec; 104(6):1107-20. PubMed ID: 19623562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective bioreactor pH control using only sparging gases.
    Hoshan L; Jiang R; Moroney J; Bui A; Zhang X; Hang TC; Xu S
    Biotechnol Prog; 2019 Jan; 35(1):e2743. PubMed ID: 30421525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.