These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 25384922)

  • 1. Nanocomposites of tantalum-based pyrochlore and indium hydroxide showing high and stable photocatalytic activities for overall water splitting and carbon dioxide reduction.
    Hsieh MC; Wu GC; Liu WG; Goddard WA; Yang CM
    Angew Chem Int Ed Engl; 2014 Dec; 53(51):14216-20. PubMed ID: 25384922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fe2 O3 -TiO2 nanocomposites for enhanced charge separation and photocatalytic activity.
    Moniz SJ; Shevlin SA; An X; Guo ZX; Tang J
    Chemistry; 2014 Nov; 20(47):15571-9. PubMed ID: 25280047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene supported plasmonic photocatalyst for hydrogen evolution in photocatalytic water splitting.
    Singh GP; Shrestha KM; Nepal A; Klabunde KJ; Sorensen CM
    Nanotechnology; 2014 Jul; 25(26):265701. PubMed ID: 24916183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photocatalytic hydrogen production by water/methanol decomposition using Au/TiO2 prepared by deposition-precipitation with urea.
    Oros-Ruiz S; Zanella R; López R; Hernández-Gordillo A; Gómez R
    J Hazard Mater; 2013 Dec; 263 Pt 1():2-10. PubMed ID: 23608749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amorphous and Crystalline Sodium Tantalate Composites for Photocatalytic Water Splitting.
    Grewe T; Tüysüz H
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):23153-62. PubMed ID: 26439706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoheterostructures of potassium tantalate and nickel oxide for photocatalytic reduction of carbon dioxide to methanol in isopropanol.
    Shao X; Yin X; Wang J
    J Colloid Interface Sci; 2018 Feb; 512():466-473. PubMed ID: 29096107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fate of O
    Dilla M; Jakubowski A; Ristig S; Strunk J; Schlögl R
    Phys Chem Chem Phys; 2019 Jul; 21(29):15949-15957. PubMed ID: 31074471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The KCaSrTa5O15 photocatalyst with tungsten bronze structure for water splitting and CO2 reduction.
    Takayama T; Tanabe K; Saito K; Iwase A; Kudo A
    Phys Chem Chem Phys; 2014 Nov; 16(44):24417-22. PubMed ID: 25301205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Illuminating CO2 reduction on frustrated Lewis pair surfaces: investigating the role of surface hydroxides and oxygen vacancies on nanocrystalline In2O(3-x)(OH)y.
    Ghuman KK; Wood TE; Hoch LB; Mims CA; Ozin GA; Singh CV
    Phys Chem Chem Phys; 2015 Jun; 17(22):14623-35. PubMed ID: 25971705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced photocatalytic H2-production activity of TiO2 using Ni(NO3)2 as an additive.
    Wang W; Liu S; Nie L; Cheng B; Yu J
    Phys Chem Chem Phys; 2013 Aug; 15(29):12033-9. PubMed ID: 23247768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A doping technique that suppresses undesirable H2 evolution derived from overall water splitting in the highly selective photocatalytic conversion of CO2 in and by water.
    Teramura K; Wang Z; Hosokawa S; Sakata Y; Tanaka T
    Chemistry; 2014 Aug; 20(32):9906-9. PubMed ID: 25044046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion.
    Fan W; Zhang Q; Wang Y
    Phys Chem Chem Phys; 2013 Feb; 15(8):2632-49. PubMed ID: 23322026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phototransformations of TiO
    Jakimińska A; Spilarewicz K; Macyk W
    Nanoscale Adv; 2023 Mar; 5(7):1926-1935. PubMed ID: 36998646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of the efficiency of photocatalytic reduction of protons to hydrogen via molecular assembly.
    Wu LZ; Chen B; Li ZJ; Tung CH
    Acc Chem Res; 2014 Jul; 47(7):2177-85. PubMed ID: 24873498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing Photocatalysts for Hydrogen Evolution: Are Complex Preparation Strategies Necessary to Produce Active Catalysts?
    Grewe T; Tüysüz H
    ChemSusChem; 2015 Sep; 8(18):3084-91. PubMed ID: 26261010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3-/I-.
    Abe R; Sayama K; Sugihara H
    J Phys Chem B; 2005 Aug; 109(33):16052-61. PubMed ID: 16853039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of medium band gap Ag-Bi-Nb-O and Ag-Bi-Ta-O semiconductors for driving direct water splitting with visible light.
    Wang L; Cao B; Kang W; Hybertsen M; Maeda K; Domen K; Khalifah PG
    Inorg Chem; 2013 Aug; 52(16):9192-205. PubMed ID: 23901790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tantalum-based semiconductors for solar water splitting.
    Zhang P; Zhang J; Gong J
    Chem Soc Rev; 2014 Jul; 43(13):4395-422. PubMed ID: 24668282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insights into the photocatalytic activity of 3-D core-shell P25@silica nanocomposites: impact of mesoporous coating.
    Gong Y; Wang DP; Wu R; Gazi S; Soo HS; Sritharan T; Chen Z
    Dalton Trans; 2017 Apr; 46(15):4994-5002. PubMed ID: 28350021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning the properties of visible-light-responsive tantalum (oxy)nitride photocatalysts by non-stoichiometric compositions: a first-principles viewpoint.
    Harb M; Sautet P; Nurlaela E; Raybaud P; Cavallo L; Domen K; Basset JM; Takanabe K
    Phys Chem Chem Phys; 2014 Oct; 16(38):20548-60. PubMed ID: 25148446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.