BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 25384981)

  • 1. Activation of 3-phosphoinositide-dependent kinase 1 (PDK1) and serum- and glucocorticoid-induced protein kinase 1 (SGK1) by short-chain sphingolipid C4-ceramide rescues the trafficking defect of ΔF508-cystic fibrosis transmembrane conductance regulator (ΔF508-CFTR).
    Caohuy H; Yang Q; Eudy Y; Ha TA; Xu AE; Glover M; Frizzell RA; Jozwik C; Pollard HB
    J Biol Chem; 2014 Dec; 289(52):35953-68. PubMed ID: 25384981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rescue of DeltaF508-CFTR by the SGK1/Nedd4-2 signaling pathway.
    Caohuy H; Jozwik C; Pollard HB
    J Biol Chem; 2009 Sep; 284(37):25241-53. PubMed ID: 19617352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein kinase CK2, cystic fibrosis transmembrane conductance regulator, and the deltaF508 mutation: F508 deletion disrupts a kinase-binding site.
    Treharne KJ; Crawford RM; Xu Z; Chen JH; Best OG; Schulte EA; Gruenert DC; Wilson SM; Sheppard DN; Kunzelmann K; Mehta A
    J Biol Chem; 2007 Apr; 282(14):10804-13. PubMed ID: 17289674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ERp29 regulates DeltaF508 and wild-type cystic fibrosis transmembrane conductance regulator (CFTR) trafficking to the plasma membrane in cystic fibrosis (CF) and non-CF epithelial cells.
    Suaud L; Miller K; Alvey L; Yan W; Robay A; Kebler C; Kreindler JL; Guttentag S; Hubbard MJ; Rubenstein RC
    J Biol Chem; 2011 Jun; 286(24):21239-53. PubMed ID: 21525008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the serine/threonine kinase SGK1 on the epithelial Na(+) channel (ENaC) and CFTR: implications for cystic fibrosis.
    Wagner CA; Ott M; Klingel K; Beck S; Melzig J; Friedrich B; Wild KN; Bröer S; Moschen I; Albers A; Waldegger S; Tümmler B; Egan ME; Geibel JP; Kandolf R; Lang F
    Cell Physiol Biochem; 2001; 11(4):209-18. PubMed ID: 11509829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PIKfyve upregulates CFTR activity.
    Gehring EM; Lam RS; Siraskar G; Koutsouki E; Seebohm G; Ureche ON; Ureche L; Baltaev R; Tavare JM; Lang F
    Biochem Biophys Res Commun; 2009 Dec; 390(3):952-7. PubMed ID: 19852935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of human cystic fibrosis transmembrane conductance regulator (CFTR) by serum- and glucocorticoid-inducible kinase (SGK1).
    Sato JD; Chapline MC; Thibodeau R; Frizzell RA; Stanton BA
    Cell Physiol Biochem; 2007; 20(1-4):91-8. PubMed ID: 17595519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The short apical membrane half-life of rescued {Delta}F508-cystic fibrosis transmembrane conductance regulator (CFTR) results from accelerated endocytosis of {Delta}F508-CFTR in polarized human airway epithelial cells.
    Swiatecka-Urban A; Brown A; Moreau-Marquis S; Renuka J; Coutermarsh B; Barnaby R; Karlson KH; Flotte TR; Fukuda M; Langford GM; Stanton BA
    J Biol Chem; 2005 Nov; 280(44):36762-72. PubMed ID: 16131493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deletion of phenylalanine 508 causes attenuated phosphorylation-dependent activation of CFTR chloride channels.
    Wang F; Zeltwanger S; Hu S; Hwang TC
    J Physiol; 2000 May; 524 Pt 3(Pt 3):637-48. PubMed ID: 10790148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional cystic fibrosis transmembrane conductance regulator tagged with an epitope of the vesicular stomatis virus glycoprotein can be addressed to the apical domain of polarized cells.
    Costa de Beauregard MA; Edelman A; Chesnoy-Marchais D; Tondelier D; Lapillonne A; El Marjou F; Robine S; Louvard D
    Eur J Cell Biol; 2000 Nov; 79(11):795-802. PubMed ID: 11139142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of the cystic fibrosis transmembrane conductance regulator by the flavonoid quercetin: potential use as a biomarker of ΔF508 cystic fibrosis transmembrane conductance regulator rescue.
    Pyle LC; Fulton JC; Sloane PA; Backer K; Mazur M; Prasain J; Barnes S; Clancy JP; Rowe SM
    Am J Respir Cell Mol Biol; 2010 Nov; 43(5):607-16. PubMed ID: 20042712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A domain mimic increases DeltaF508 CFTR trafficking and restores cAMP-stimulated anion secretion in cystic fibrosis epithelia.
    Clarke LL; Gawenis LR; Hwang TC; Walker NM; Gruis DB; Price EM
    Am J Physiol Cell Physiol; 2004 Jul; 287(1):C192-9. PubMed ID: 15028554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aldosterone-induced serum and glucocorticoid-induced kinase 1 expression is accompanied by Nedd4-2 phosphorylation and increased Na+ transport in cortical collecting duct cells.
    Flores SY; Loffing-Cueni D; Kamynina E; Daidié D; Gerbex C; Chabanel S; Dudler J; Loffing J; Staub O
    J Am Soc Nephrol; 2005 Aug; 16(8):2279-87. PubMed ID: 15958725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global proteomic approach unmasks involvement of keratins 8 and 18 in the delivery of cystic fibrosis transmembrane conductance regulator (CFTR)/deltaF508-CFTR to the plasma membrane.
    Davezac N; Tondelier D; Lipecka J; Fanen P; Demaugre F; Debski J; Dadlez M; Schrattenholz A; Cahill MA; Edelman A
    Proteomics; 2004 Dec; 4(12):3833-44. PubMed ID: 15529338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Akt mediates the effect of insulin on epithelial sodium channels by inhibiting Nedd4-2.
    Lee IH; Dinudom A; Sanchez-Perez A; Kumar S; Cook DI
    J Biol Chem; 2007 Oct; 282(41):29866-73. PubMed ID: 17715136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Annexin A5 increases the cell surface expression and the chloride channel function of the DeltaF508-cystic fibrosis transmembrane regulator.
    Le Drévo MA; Benz N; Kerbiriou M; Giroux-Metges MA; Pennec JP; Trouvé P; Férec C
    Biochim Biophys Acta; 2008 Oct; 1782(10):605-14. PubMed ID: 18773956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rescue of DeltaF508-CFTR trafficking and gating in human cystic fibrosis airway primary cultures by small molecules.
    Van Goor F; Straley KS; Cao D; González J; Hadida S; Hazlewood A; Joubran J; Knapp T; Makings LR; Miller M; Neuberger T; Olson E; Panchenko V; Rader J; Singh A; Stack JH; Tung R; Grootenhuis PD; Negulescu P
    Am J Physiol Lung Cell Mol Physiol; 2006 Jun; 290(6):L1117-30. PubMed ID: 16443646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nedd4-2 modulates renal Na+-Cl- cotransporter via the aldosterone-SGK1-Nedd4-2 pathway.
    Arroyo JP; Lagnaz D; Ronzaud C; Vázquez N; Ko BS; Moddes L; Ruffieux-Daidié D; Hausel P; Koesters R; Yang B; Stokes JB; Hoover RS; Gamba G; Staub O
    J Am Soc Nephrol; 2011 Sep; 22(9):1707-19. PubMed ID: 21852580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rescue of DeltaF508-CFTR (cystic fibrosis transmembrane conductance regulator) by curcumin: involvement of the keratin 18 network.
    Lipecka J; Norez C; Bensalem N; Baudouin-Legros M; Planelles G; Becq F; Edelman A; Davezac N
    J Pharmacol Exp Ther; 2006 May; 317(2):500-5. PubMed ID: 16424149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proinflammatory effect of sodium 4-phenylbutyrate in deltaF508-cystic fibrosis transmembrane conductance regulator lung epithelial cells: involvement of extracellular signal-regulated protein kinase 1/2 and c-Jun-NH2-terminal kinase signaling.
    Roque T; Boncoeur E; Saint-Criq V; Bonvin E; Clement A; Tabary O; Jacquot J
    J Pharmacol Exp Ther; 2008 Sep; 326(3):949-56. PubMed ID: 18574003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.