BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

896 related articles for article (PubMed ID: 25385004)

  • 21. The rise and rise of stealth nanocarriers for cancer therapy: passive versus active targeting.
    Huynh NT; Roger E; Lautram N; BenoƮt JP; Passirani C
    Nanomedicine (Lond); 2010 Nov; 5(9):1415-33. PubMed ID: 21128723
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Current Advances in Chitosan Nanoparticles Based Oral Drug Delivery for Colorectal Cancer Treatment.
    Choukaife H; Seyam S; Alallam B; Doolaanea AA; Alfatama M
    Int J Nanomedicine; 2022; 17():3933-3966. PubMed ID: 36105620
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tumor-targeting glycol chitosan nanocarriers: overcoming the challenges posed by chemotherapeutics.
    Choi Y; Lim S; Yoon HY; Kim BS; Kwon IC; Kim K
    Expert Opin Drug Deliv; 2019 Aug; 16(8):835-846. PubMed ID: 31343904
    [No Abstract]   [Full Text] [Related]  

  • 24. Demethoxycurcumin-carrying chitosan-antibody core-shell nanoparticles with multitherapeutic efficacy toward malignant A549 lung tumor: from in vitro characterization to in vivo evaluation.
    Huang WT; Larsson M; Wang YJ; Chiou SH; Lin HY; Liu DM
    Mol Pharm; 2015 Apr; 12(4):1242-9. PubMed ID: 25760774
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transferrin-Conjugated Nanocarriers as Active-Targeted Drug Delivery Platforms for Cancer Therapy.
    Nogueira-Librelotto DR; Codevilla CF; Farooqi A; Rolim CM
    Curr Pharm Des; 2017; 23(3):454-466. PubMed ID: 27784246
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanocarriers-Mediated Drug Delivery Systems for Anticancer Agents: An Overview and Perspectives.
    Edis Z; Wang J; Waqas MK; Ijaz M; Ijaz M
    Int J Nanomedicine; 2021; 16():1313-1330. PubMed ID: 33628022
    [TBL] [Abstract][Full Text] [Related]  

  • 27. pH-sensitive and specific ligand-conjugated chitosan nanogels for efficient drug delivery.
    Xing L; Fan YT; Shen LJ; Yang CX; Liu XY; Ma YN; Qi LY; Cho KH; Cho CS; Jiang HL
    Int J Biol Macromol; 2019 Dec; 141():85-97. PubMed ID: 31473314
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polymeric nanoparticles for targeted drug delivery system for cancer therapy.
    Masood F
    Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():569-578. PubMed ID: 26706565
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physicochemical, pharmaceutical and biological approaches toward designing optimized and efficient hydrophobically modified chitosan-based polymeric micelles as a nanocarrier system for targeted delivery of anticancer drugs.
    Mahmoudzadeh M; Fassihi A; Emami J; Davies NM; Dorkoosh F
    J Drug Target; 2013 Sep; 21(8):693-709. PubMed ID: 23915108
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites.
    Attia MF; Anton N; Wallyn J; Omran Z; Vandamme TF
    J Pharm Pharmacol; 2019 Aug; 71(8):1185-1198. PubMed ID: 31049986
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoparticles for tumor targeted therapies and their pharmacokinetics.
    Wang J; Sui M; Fan W
    Curr Drug Metab; 2010 Feb; 11(2):129-41. PubMed ID: 20359289
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The ligand nanoparticle conjugation approach for targeted cancer therapy.
    Karra N; Benita S
    Curr Drug Metab; 2012 Jan; 13(1):22-41. PubMed ID: 21892918
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Masking and triggered unmasking of targeting ligands on nanocarriers to improve drug delivery to brain tumors.
    McNeeley KM; Karathanasis E; Annapragada AV; Bellamkonda RV
    Biomaterials; 2009 Aug; 30(23-24):3986-95. PubMed ID: 19427688
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tumor-targeting delivery of herb-based drugs with cell-penetrating/tumor-targeting peptide-modified nanocarriers.
    Kebebe D; Liu Y; Wu Y; Vilakhamxay M; Liu Z; Li J
    Int J Nanomedicine; 2018; 13():1425-1442. PubMed ID: 29563797
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advances in using chitosan-based nanoparticles for in vitro and in vivo drug and gene delivery.
    Duceppe N; Tabrizian M
    Expert Opin Drug Deliv; 2010 Oct; 7(10):1191-207. PubMed ID: 20836623
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of pH-responsiveness in the design of chitosan-based cancer nanotherapeutics: A review.
    Suarato G; Li W; Meng Y
    Biointerphases; 2016 Dec; 11(4):04B201. PubMed ID: 27016506
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chitosan Nanoparticles-Based Cancer Drug Delivery: Application and Challenges.
    Sachdeva B; Sachdeva P; Negi A; Ghosh S; Han S; Dewanjee S; Jha SK; Bhaskar R; Sinha JK; Paiva-Santos AC; Jha NK; Kesari KK
    Mar Drugs; 2023 Mar; 21(4):. PubMed ID: 37103352
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dendronized Systems for the Delivery of Chemotherapeutics.
    Dockery L; Daniel MC
    Adv Cancer Res; 2018; 139():85-120. PubMed ID: 29941108
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Supramolecular Self-Assembled Nanogels a New Platform for Anticancer Drug Delivery.
    Varshosaz J; Taymouri S; Ghassami E
    Curr Pharm Des; 2017; 23(35):5242-5260. PubMed ID: 28699536
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Supramolecular nanoscale assemblies for cancer diagnosis and therapy.
    Coelho SC; Pereira MC; Juzeniene A; Juzenas P; Coelho MAN
    J Control Release; 2015 Sep; 213():152-167. PubMed ID: 26160308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 45.