These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 25385229)

  • 1. Infection: microbiota reconstitution for resistance to Clostridium difficile infection--fight fire with fire?
    Ray K
    Nat Rev Gastroenterol Hepatol; 2015 Jan; 12(1):4. PubMed ID: 25385229
    [No Abstract]   [Full Text] [Related]  

  • 2. Systematic discovery of probiotics.
    Forster SC; Lawley TD
    Nat Biotechnol; 2015 Jan; 33(1):47-9. PubMed ID: 25574637
    [No Abstract]   [Full Text] [Related]  

  • 3. Dysfunctional families: Clostridium scindens and secondary bile acids inhibit the growth of Clostridium difficile.
    Greathouse KL; Harris CC; Bultman SJ
    Cell Metab; 2015 Jan; 21(1):9-10. PubMed ID: 25565200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile.
    Buffie CG; Bucci V; Stein RR; McKenney PT; Ling L; Gobourne A; No D; Liu H; Kinnebrew M; Viale A; Littmann E; van den Brink MR; Jenq RR; Taur Y; Sander C; Cross JR; Toussaint NC; Xavier JB; Pamer EG
    Nature; 2015 Jan; 517(7533):205-8. PubMed ID: 25337874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial bile acid metabolic clusters: the bouncers at the bar.
    Sorg JA
    Cell Host Microbe; 2014 Nov; 16(5):551-2. PubMed ID: 25525784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clostridium difficile colitis: pathogenesis and host defence.
    Abt MC; McKenney PT; Pamer EG
    Nat Rev Microbiol; 2016 Oct; 14(10):609-20. PubMed ID: 27573580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of microbial derived secondary bile acids on colonization resistance against Clostridium difficile in the gastrointestinal tract.
    Winston JA; Theriot CM
    Anaerobe; 2016 Oct; 41():44-50. PubMed ID: 27163871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in microbiota composition, bile and fatty acid metabolism, in successful faecal microbiota transplantation for Clostridioides difficile infection.
    Brown JR; Flemer B; Joyce SA; Zulquernain A; Sheehan D; Shanahan F; O'Toole PW
    BMC Gastroenterol; 2018 Aug; 18(1):131. PubMed ID: 30153805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes of poultry faecal microbiota associated with Clostridium difficile colonisation.
    Skraban J; Dzeroski S; Zenko B; Tusar L; Rupnik M
    Vet Microbiol; 2013 Aug; 165(3-4):416-24. PubMed ID: 23664184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in Colonic Bile Acid Composition following Fecal Microbiota Transplantation Are Sufficient to Control Clostridium difficile Germination and Growth.
    Weingarden AR; Dosa PI; DeWinter E; Steer CJ; Shaughnessy MK; Johnson JR; Khoruts A; Sadowsky MJ
    PLoS One; 2016; 11(1):e0147210. PubMed ID: 26789728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between gut bacteria and bile in health and disease.
    Long SL; Gahan CGM; Joyce SA
    Mol Aspects Med; 2017 Aug; 56():54-65. PubMed ID: 28602676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism.
    Wahlström A; Sayin SI; Marschall HU; Bäckhed F
    Cell Metab; 2016 Jul; 24(1):41-50. PubMed ID: 27320064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics and establishment of Clostridium difficile infection in the murine gastrointestinal tract.
    Koenigsknecht MJ; Theriot CM; Bergin IL; Schumacher CA; Schloss PD; Young VB
    Infect Immun; 2015 Mar; 83(3):934-41. PubMed ID: 25534943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bile salt hydrolase-mediated inhibitory effect of Bacteroides ovatus on growth of Clostridium difficile.
    Yoon S; Yu J; McDowell A; Kim SH; You HJ; Ko G
    J Microbiol; 2017 Nov; 55(11):892-899. PubMed ID: 29076071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional changes within the gut microbiota and susceptibility to Clostridium difficile infection.
    Ross CL; Spinler JK; Savidge TC
    Anaerobe; 2016 Oct; 41():37-43. PubMed ID: 27180006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recurrent Clostridium difficile infection associates with distinct bile acid and microbiome profiles.
    Allegretti JR; Kearney S; Li N; Bogart E; Bullock K; Gerber GK; Bry L; Clish CB; Alm E; Korzenik JR
    Aliment Pharmacol Ther; 2016 Jun; 43(11):1142-53. PubMed ID: 27086647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bloom and bust: intestinal microbiota dynamics in response to hospital exposures and Clostridium difficile colonization or infection.
    Vincent C; Miller MA; Edens TJ; Mehrotra S; Dewar K; Manges AR
    Microbiome; 2016 Mar; 4():12. PubMed ID: 26975510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward a true bacteriotherapy for Clostridium difficile infection.
    Rupnik M
    N Engl J Med; 2015 Apr; 372(16):1566-8. PubMed ID: 25875262
    [No Abstract]   [Full Text] [Related]  

  • 19. Pathways and functions of gut microbiota metabolism impacting host physiology.
    Krishnan S; Alden N; Lee K
    Curr Opin Biotechnol; 2015 Dec; 36():137-45. PubMed ID: 26340103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complicated fecal microbiota transplantation in a tetraplegic patient with severe Clostridium difficile infection.
    Brechmann T; Swol J; Knop-Hammad V; Willert J; Aach M; Cruciger O; Schmiegel W; Schildhauer TA; Hamsen U
    World J Gastroenterol; 2015 Mar; 21(12):3736-40. PubMed ID: 25834343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.