These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 25385283)

  • 1. Spatial structuring of a supramolecular hydrogel by using a visible-light triggered catalyst.
    Maity C; Hendriksen WE; van Esch JH; Eelkema R
    Angew Chem Int Ed Engl; 2015 Jan; 54(3):998-1001. PubMed ID: 25385283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial and directional control over self-assembly using catalytic micropatterned surfaces.
    Olive AG; Abdullah NH; Ziemecka I; Mendes E; Eelkema R; van Esch JH
    Angew Chem Int Ed Engl; 2014 Apr; 53(16):4132-6. PubMed ID: 24615796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme-triggered self-assembly of a small molecule: a supramolecular hydrogel with leaf-like structures and an ultra-low minimum gelation concentration.
    Wang H; Ren C; Song Z; Wang L; Chen X; Yang Z
    Nanotechnology; 2010 Jun; 21(22):225606. PubMed ID: 20453274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoregulating of Stretchability and Toughness of a Self-Healable Polymer Hydrogel.
    Xiong C; Zhang L; Xie M; Sun R
    Macromol Rapid Commun; 2018 May; 39(10):e1800018. PubMed ID: 29675886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly of short peptides to form hydrogels: design of building blocks, physical properties and technological applications.
    Fichman G; Gazit E
    Acta Biomater; 2014 Apr; 10(4):1671-82. PubMed ID: 23958781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-controlled formation of vesicles and supramolecular organogels by a cholesterol-bearing amphiphilic molecular switch.
    van Herpt JT; Areephong J; Stuart MC; Browne WR; Feringa BL
    Chemistry; 2014 Feb; 20(6):1737-42. PubMed ID: 24436282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photo gel-sol/sol-gel transition and its patterning of a supramolecular hydrogel as stimuli-responsive biomaterials.
    Matsumoto S; Yamaguchi S; Ueno S; Komatsu H; Ikeda M; Ishizuka K; Iko Y; Tabata KV; Aoki H; Ito S; Noji H; Hamachi I
    Chemistry; 2008; 14(13):3977-86. PubMed ID: 18335444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity.
    Mironi-Harpaz I; Wang DY; Venkatraman S; Seliktar D
    Acta Biomater; 2012 May; 8(5):1838-48. PubMed ID: 22285429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic control over supramolecular gel formation.
    Boekhoven J; Poolman JM; Maity C; Li F; van der Mee L; Minkenberg CB; Mendes E; van Esch JH; Eelkema R
    Nat Chem; 2013 May; 5(5):433-7. PubMed ID: 23609096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalysis of Supramolecular Hydrogelation.
    Trausel F; Versluis F; Maity C; Poolman JM; Lovrak M; van Esch JH; Eelkema R
    Acc Chem Res; 2016 Jul; 49(7):1440-7. PubMed ID: 27314682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-molecular-weight gelators: elucidating the principles of gelation based on gelator solubility and a cooperative self-assembly model.
    Hirst AR; Coates IA; Boucheteau TR; Miravet JF; Escuder B; Castelletto V; Hamley IW; Smith DK
    J Am Chem Soc; 2008 Jul; 130(28):9113-21. PubMed ID: 18558681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic hydrogelation of small molecules.
    Yang Z; Liang G; Xu B
    Acc Chem Res; 2008 Feb; 41(2):315-26. PubMed ID: 18205323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of peptide and guest charge on the structural, mechanical and release properties of β-sheet forming peptides.
    Roberts D; Rochas C; Saiani A; Miller AF
    Langmuir; 2012 Nov; 28(46):16196-206. PubMed ID: 23088490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stiff, multistimuli-responsive supramolecular hydrogels as unique molds for 2D/3D microarchitectures of live cells.
    Komatsu H; Tsukiji S; Ikeda M; Hamachi I
    Chem Asian J; 2011 Sep; 6(9):2368-75. PubMed ID: 21721133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocontrolled Hierarchical Self-Assembly of Anisotropic Micropatterns of Nanofibers onto Isotropic Surfaces.
    de Vet C; Gartzia-Rivero L; Schäfer P; Raffy G; Del Guerzo A
    Small; 2020 Feb; 16(7):e1906723. PubMed ID: 31971670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic control over the formation of supramolecular materials.
    Eelkema R; van Esch JH
    Org Biomol Chem; 2014 Sep; 12(33):6292-6. PubMed ID: 25026045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of supramolecular hydrogels with controlled microstructures and stability via molecular assembling in a two-component system.
    Wu J; Tang L; Chen K; Yan L; Li F; Wang Y
    J Colloid Interface Sci; 2007 Mar; 307(1):280-7. PubMed ID: 17141263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ KPFM imaging of local photovoltaic characteristics of structured organic photovoltaic devices.
    Watanabe S; Fukuchi Y; Fukasawa M; Sassa T; Kimoto A; Tajima Y; Uchiyama M; Yamashita T; Matsumoto M; Aoyama T
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1481-7. PubMed ID: 24450927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatially resolved multicomponent gels.
    Draper ER; Eden EG; McDonald TO; Adams DJ
    Nat Chem; 2015 Oct; 7(10):848-52. PubMed ID: 26391086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyrene-based fluorescent supramolecular hydrogel: scaffold for energy transfer.
    Mukherjee S; Kar T; Das PK
    Chem Asian J; 2014 Oct; 9(10):2798-805. PubMed ID: 25056417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.