These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 25385545)

  • 1. Relative ordering between bright and dark excitons in single-walled carbon nanotubes.
    Zhou W; Nakamura D; Liu H; Kataura H; Takeyama S
    Sci Rep; 2014 Nov; 4():6999. PubMed ID: 25385545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bright and dark excitons in semiconductor carbon nanotubes: insights from electronic structure calculations.
    Kilina S; Badaeva E; Piryatinski A; Tretiak S; Saxena A; Bishop AR
    Phys Chem Chem Phys; 2009 Jun; 11(21):4113-23. PubMed ID: 19458812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct observation of deep excitonic states in the photoluminescence spectra of single-walled carbon nanotubes.
    Kiowski O; Arnold K; Lebedkin S; Hennrich F; Kappes MM
    Phys Rev Lett; 2007 Dec; 99(23):237402. PubMed ID: 18233410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct observation of dark excitons in individual carbon nanotubes: inhomogeneity in the exchange splitting.
    Srivastava A; Htoon H; Klimov VI; Kono J
    Phys Rev Lett; 2008 Aug; 101(8):087402. PubMed ID: 18764659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Confirmation of K-momentum dark exciton vibronic sidebands using 13C-labeled, highly enriched (6,5) single-walled carbon nanotubes.
    Blackburn JL; Holt JM; Irurzun VM; Resasco DE; Rumbles G
    Nano Lett; 2012 Mar; 12(3):1398-403. PubMed ID: 22313425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of bright and dark excitons in the temperature-dependent photoluminescence of carbon nanotubes.
    Mortimer IB; Nicholas RJ
    Phys Rev Lett; 2007 Jan; 98(2):027404. PubMed ID: 17358649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitons in Single-Walled Carbon Nanotubes and Their Dynamics.
    Amori AR; Hou Z; Krauss TD
    Annu Rev Phys Chem; 2018 Apr; 69():81-99. PubMed ID: 29401037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-polarized excitons in carbon nanotubes.
    Kilina S; Tretiak S; Doorn SK; Luo Z; Papadimitrakopoulos F; Piryatinski A; Saxena A; Bishop AR
    Proc Natl Acad Sci U S A; 2008 May; 105(19):6797-802. PubMed ID: 18463293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast terahertz probes of interacting dark excitons in chirality-specific semiconducting single-walled carbon nanotubes.
    Luo L; Chatzakis I; Patz A; Wang J
    Phys Rev Lett; 2015 Mar; 114(10):107402. PubMed ID: 25815965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitons and many-electron effects in the optical response of single-walled boron nitride nanotubes.
    Park CH; Spataru CD; Louie SG
    Phys Rev Lett; 2006 Mar; 96(12):126105. PubMed ID: 16605933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defect-induced photoluminescence from dark excitonic states in individual single-walled carbon nanotubes.
    Harutyunyan H; Gokus T; Green AA; Hersam MC; Allegrini M; Hartschuh A
    Nano Lett; 2009 May; 9(5):2010-4. PubMed ID: 19331347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for dark excitons in a single carbon nanotube due to the Aharonov-Bohm effect.
    Matsunaga R; Matsuda K; Kanemitsu Y
    Phys Rev Lett; 2008 Oct; 101(14):147404. PubMed ID: 18851574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theory and ab initio calculation of radiative lifetime of excitons in semiconducting carbon nanotubes.
    Spataru CD; Ismail-Beigi S; Capaz RB; Louie SG
    Phys Rev Lett; 2005 Dec; 95(24):247402. PubMed ID: 16384422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brightening of dark excitons in 2D perovskites.
    Dyksik M; Duim H; Maude DK; Baranowski M; Loi MA; Plochocka P
    Sci Adv; 2021 Nov; 7(46):eabk0904. PubMed ID: 34757785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic brightening of carbon nanotube photoluminescence through symmetry breaking.
    Shaver J; Kono J; Portugall O; Krstić V; Rikken GL; Miyauchi Y; Maruyama S; Perebeinos V
    Nano Lett; 2007 Jul; 7(7):1851-5. PubMed ID: 17542638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitons in semiconducting carbon nanotubes: diameter-dependent photoluminescence spectra.
    Kanemitsu Y
    Phys Chem Chem Phys; 2011 Sep; 13(33):14879-88. PubMed ID: 21735026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exciton states and optical properties of carbon nanotubes.
    Ajiki H
    J Phys Condens Matter; 2012 Dec; 24(48):483001. PubMed ID: 23139202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exciton energy transfer-assisted photoluminescence brightening from freestanding single-walled carbon nanotube bundles.
    Kato T; Hatakeyama R
    J Am Chem Soc; 2008 Jun; 130(25):8101-7. PubMed ID: 18512918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.