BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 25385617)

  • 1. Specific functions of the Wnt signaling system in gene regulatory networks throughout the early sea urchin embryo.
    Cui M; Siriwon N; Li E; Davidson EH; Peter IS
    Proc Natl Acad Sci U S A; 2014 Nov; 111(47):E5029-38. PubMed ID: 25385617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wnt signaling in the early sea urchin embryo.
    Kumburegama S; Wikramanayake AH
    Methods Mol Biol; 2008; 469():187-99. PubMed ID: 19109711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network.
    Ettensohn CA; Kitazawa C; Cheers MS; Leonard JD; Sharma T
    Development; 2007 Sep; 134(17):3077-87. PubMed ID: 17670786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Canonical and non-canonical Wnt signaling pathways define the expression domains of Frizzled 5/8 and Frizzled 1/2/7 along the early anterior-posterior axis in sea urchin embryos.
    Range RC
    Dev Biol; 2018 Dec; 444(2):83-92. PubMed ID: 30332609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dynamic gene expression patterns of transcription factors constituting the sea urchin aboral ectoderm gene regulatory network.
    Chen JH; Luo YJ; Su YH
    Dev Dyn; 2011 Jan; 240(1):250-60. PubMed ID: 21181943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive survey of wnt and frizzled expression in the sea urchin Paracentrotus lividus.
    Robert N; Lhomond G; Schubert M; Croce JC
    Genesis; 2014 Mar; 52(3):235-50. PubMed ID: 24550167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo.
    Davidson EH; Rast JP; Oliveri P; Ransick A; Calestani C; Yuh CH; Minokawa T; Amore G; Hinman V; Arenas-Mena C; Otim O; Brown CT; Livi CB; Lee PY; Revilla R; Schilstra MJ; Clarke PJ; Rust AG; Pan Z; Arnone MI; Rowen L; Cameron RA; McClay DR; Hood L; Bolouri H
    Dev Biol; 2002 Jun; 246(1):162-90. PubMed ID: 12027441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimentally based sea urchin gene regulatory network and the causal explanation of developmental phenomenology.
    Ben-Tabou de-Leon S; Davidson EH
    Wiley Interdiscip Rev Syst Biol Med; 2009; 1(2):237-246. PubMed ID: 20228891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cis-regulatory control of the nodal gene, initiator of the sea urchin oral ectoderm gene network.
    Nam J; Su YH; Lee PY; Robertson AJ; Coffman JA; Davidson EH
    Dev Biol; 2007 Jun; 306(2):860-9. PubMed ID: 17451671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks.
    Poustka AJ; Kühn A; Groth D; Weise V; Yaguchi S; Burke RD; Herwig R; Lehrach H; Panopoulou G
    Genome Biol; 2007; 8(5):R85. PubMed ID: 17506889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A regulatory gene network that directs micromere specification in the sea urchin embryo.
    Oliveri P; Carrick DM; Davidson EH
    Dev Biol; 2002 Jun; 246(1):209-28. PubMed ID: 12027443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Divergence of ectodermal and mesodermal gene regulatory network linkages in early development of sea urchins.
    Erkenbrack EM
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):E7202-E7211. PubMed ID: 27810959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geometric control of ciliated band regulatory states in the sea urchin embryo.
    Barsi JC; Li E; Davidson EH
    Development; 2015 Mar; 142(5):953-61. PubMed ID: 25655703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A genome-wide survey of the evolutionarily conserved Wnt pathways in the sea urchin Strongylocentrotus purpuratus.
    Croce JC; Wu SY; Byrum C; Xu R; Duloquin L; Wikramanayake AH; Gache C; McClay DR
    Dev Biol; 2006 Dec; 300(1):121-31. PubMed ID: 17069790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signal-dependent regulation of the sea urchin skeletogenic gene regulatory network.
    Sun Z; Ettensohn CA
    Gene Expr Patterns; 2014 Nov; 16(2):93-103. PubMed ID: 25460514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene regulatory networks for ectoderm specification in sea urchin embryos.
    Su YH
    Biochim Biophys Acta; 2009 Apr; 1789(4):261-7. PubMed ID: 19429544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A biphasic role of non-canonical Wnt16 signaling during early anterior-posterior patterning and morphogenesis of the sea urchin embryo.
    Martínez-Bartolomé M; Range RC
    Development; 2019 Dec; 146(24):. PubMed ID: 31822478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frizzled5/8 is required in secondary mesenchyme cells to initiate archenteron invagination during sea urchin development.
    Croce J; Duloquin L; Lhomond G; McClay DR; Gache C
    Development; 2006 Feb; 133(3):547-57. PubMed ID: 16396908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. cis-Regulatory control of the initial neurogenic pattern of onecut gene expression in the sea urchin embryo.
    Barsi JC; Davidson EH
    Dev Biol; 2016 Jan; 409(1):310-318. PubMed ID: 26522848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.