These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 25385657)

  • 21. Single- and few-layer WTe2 and their suspended nanostructures: Raman signatures and nanomechanical resonances.
    Lee J; Ye F; Wang Z; Yang R; Hu J; Mao Z; Wei J; Feng PX
    Nanoscale; 2016 Apr; 8(15):7854-60. PubMed ID: 27030574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Approaching the Strain-Free Limit in Ultrathin Nanomechanical Resonators.
    Zhou J; Moldovan N; Stan L; Cai H; Czaplewski DA; López D
    Nano Lett; 2020 Aug; 20(8):5693-5698. PubMed ID: 32530287
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identifying, Resolving, and Quantifying Anisotropy in ReS
    Xu B; Zhu J; Xiao F; Jiao C; Liang Y; Wen T; Wu S; Zhang Z; Lin L; Pei S; Jia H; Chen Y; Ren Z; Wei X; Huang W; Xia J; Wang Z
    Small; 2023 Jun; 19(24):e2300631. PubMed ID: 36897000
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anisotropic Thermal Conductivity of Suspended Black Phosphorus Probed by Opto-Thermomechanical Resonance Spectromicroscopy.
    Islam A; van den Akker A; Feng PX
    Nano Lett; 2018 Dec; 18(12):7683-7691. PubMed ID: 30372081
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator.
    Feng XL; White CJ; Hajimiri A; Roukes ML
    Nat Nanotechnol; 2008 Jun; 3(6):342-6. PubMed ID: 18654544
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fiber-optic ferrule-top nanomechanical resonator with multilayer graphene film.
    Ma J; Jin W; Xuan H; Wang C; Ho HL
    Opt Lett; 2014 Aug; 39(16):4769-72. PubMed ID: 25121870
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Many-element coupled-resonator optical waveguides using gapless-coupled microdisk resonators.
    Luo X; Poon AW
    Opt Express; 2009 Dec; 17(26):23617-28. PubMed ID: 20052071
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Model-independent quantitative measurement of nanomechanical oscillator vibrations using electron-microscope linescans.
    Wang H; Fenton JC; Chiatti O; Warburton PA
    Rev Sci Instrum; 2013 Jul; 84(7):075002. PubMed ID: 23902094
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Strong gate coupling of high-Q nanomechanical resonators.
    Sulkko J; Sillanpää MA; Häkkinen P; Lechner L; Helle M; Fefferman A; Parpia J; Hakonen PJ
    Nano Lett; 2010 Dec; 10(12):4884-9. PubMed ID: 21053964
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experimental study on the characteristic of the NS-GT cut quartz crystal resonator oscillating in the sub-resonant frequency.
    Yamagata S; Kawashima H
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(5):1175-82. PubMed ID: 18244311
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electromechanical coupling and design considerations in single-layer MoS2 suspended-channel transistors and resonators.
    Yang R; Islam A; Feng PX
    Nanoscale; 2015 Dec; 7(47):19921-9. PubMed ID: 26580457
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Graphene-Based Nanoelectromechanical Periodic Array with Tunable Frequency.
    Zhang QH; Ying Y; Zhang ZZ; Su ZJ; Ma H; Qin GQ; Song XX; Guo GP
    Nano Lett; 2021 Oct; 21(20):8571-8578. PubMed ID: 34613727
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Micromachined thin film plate acoustic wave resonators (FPAR): Part II.
    Yantchev V; Arapan L; Katardjiev I
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Dec; 56(12):2701-10. PubMed ID: 20040407
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrostatically driven drumhead resonators based on freestanding membranes of cross-linked gold nanoparticles.
    Schlicke H; Schröter CJ; Vossmeyer T
    Nanoscale; 2016 Sep; 8(35):15880-7. PubMed ID: 27471074
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In-plane nanoelectromechanical resonators based on silicon nanowire piezoresistive detection.
    Mile E; Jourdan G; Bargatin I; Labarthe S; Marcoux C; Andreucci P; Hentz S; Kharrat C; Colinet E; Duraffourg L
    Nanotechnology; 2010 Apr; 21(16):165504. PubMed ID: 20351411
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface vibrational modes in disk-shaped resonators.
    Dmitriev AV; Gritsenko DS; Mitrofanov VP
    Ultrasonics; 2014 Mar; 54(3):905-13. PubMed ID: 24295910
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrothermally Tunable Graphene Resonators Operating at Very High Temperature up to 1200 K.
    Ye F; Lee J; Feng PX
    Nano Lett; 2018 Mar; 18(3):1678-1685. PubMed ID: 29385804
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial mapping of multimode Brownian motions in high-frequency silicon carbide microdisk resonators.
    Wang Z; Lee J; Feng PX
    Nat Commun; 2014 Nov; 5():5158. PubMed ID: 25399871
    [TBL] [Abstract][Full Text] [Related]  

  • 39. VHF NEMS-CMOS piezoresistive resonators for advanced sensing applications.
    Arcamone J; Dupré C; Arndt G; Colinet E; Hentz S; Ollier E; Duraffourg L
    Nanotechnology; 2014 Oct; 25(43):435501. PubMed ID: 25288224
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient electrical control of thin-film black phosphorus bandgap.
    Deng B; Tran V; Xie Y; Jiang H; Li C; Guo Q; Wang X; Tian H; Koester SJ; Wang H; Cha JJ; Xia Q; Yang L; Xia F
    Nat Commun; 2017 Apr; 8():14474. PubMed ID: 28422160
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.