BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 25385672)

  • 1. Protrusion force microscopy reveals oscillatory force generation and mechanosensing activity of human macrophage podosomes.
    Labernadie A; Bouissou A; Delobelle P; Balor S; Voituriez R; Proag A; Fourquaux I; Thibault C; Vieu C; Poincloux R; Charrière GM; Maridonneau-Parini I
    Nat Commun; 2014 Nov; 5():5343. PubMed ID: 25385672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the force and spatial dynamics of macrophage podosomes by multi-particle tracking.
    Proag A; Bouissou A; Vieu C; Maridonneau-Parini I; Poincloux R
    Methods; 2016 Feb; 94():75-84. PubMed ID: 26342257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Working together: spatial synchrony in the force and actin dynamics of podosome first neighbors.
    Proag A; Bouissou A; Mangeat T; Voituriez R; Delobelle P; Thibault C; Vieu C; Maridonneau-Parini I; Poincloux R
    ACS Nano; 2015; 9(4):3800-13. PubMed ID: 25791988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protrusion Force Microscopy: A Method to Quantify Forces Developed by Cell Protrusions.
    Bouissou A; Proag A; Portes M; Soldan V; Balor S; Thibault C; Vieu C; Maridonneau-Parini I; Poincloux R
    J Vis Exp; 2018 Jun; (136):. PubMed ID: 29985327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Podosome Force Generation Machinery: A Local Balance between Protrusion at the Core and Traction at the Ring.
    Bouissou A; Proag A; Bourg N; Pingris K; Cabriel C; Balor S; Mangeat T; Thibault C; Vieu C; Dupuis G; Fort E; Lévêque-Fort S; Maridonneau-Parini I; Poincloux R
    ACS Nano; 2017 Apr; 11(4):4028-4040. PubMed ID: 28355484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA mechanotechnology reveals that integrin receptors apply pN forces in podosomes on fluid substrates.
    Glazier R; Brockman JM; Bartle E; Mattheyses AL; Destaing O; Salaita K
    Nat Commun; 2019 Oct; 10(1):4507. PubMed ID: 31628308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feel the force: Podosomes in mechanosensing.
    Linder S; Wiesner C
    Exp Cell Res; 2016 Apr; 343(1):67-72. PubMed ID: 26658516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of monocyte cell tractions in 2.5D reveals mesoscale mechanics of podosomes during substrate-indenting cell protrusion.
    Schürmann H; Abbasi F; Russo A; Hofemeier AD; Brandt M; Roth J; Vogl T; Betz T
    J Cell Sci; 2022 May; 135(10):. PubMed ID: 35621127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of podosome stiffness revealed by atomic force microscopy.
    Labernadie A; Thibault C; Vieu C; Maridonneau-Parini I; Charrière GM
    Proc Natl Acad Sci U S A; 2010 Dec; 107(49):21016-21. PubMed ID: 21081699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The formins FHOD1 and INF2 regulate inter- and intra-structural contractility of podosomes.
    Panzer L; Trübe L; Klose M; Joosten B; Slotman J; Cambi A; Linder S
    J Cell Sci; 2016 Jan; 129(2):298-313. PubMed ID: 26621033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Actomyosin-dependent dynamic spatial patterns of cytoskeletal components drive mesoscale podosome organization.
    Meddens MB; Pandzic E; Slotman JA; Guillet D; Joosten B; Mennens S; Paardekooper LM; Houtsmuller AB; van den Dries K; Wiseman PW; Cambi A
    Nat Commun; 2016 Oct; 7():13127. PubMed ID: 27721497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macrophage podosomes go 3D.
    Van Goethem E; Guiet R; Balor S; Charrière GM; Poincloux R; Labrousse A; Maridonneau-Parini I; Le Cabec V
    Eur J Cell Biol; 2011; 90(2-3):224-36. PubMed ID: 20801545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemo-mechanical diffusion waves explain collective dynamics of immune cell podosomes.
    Gong Z; van den Dries K; Migueles-Ramírez RA; Wiseman PW; Cambi A; Shenoy VB
    Nat Commun; 2023 May; 14(1):2902. PubMed ID: 37217555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the mechanical landscape - new insights into podosome architecture and mechanics.
    van den Dries K; Linder S; Maridonneau-Parini I; Poincloux R
    J Cell Sci; 2019 Dec; 132(24):. PubMed ID: 31836688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-organized podosomes are dynamic mechanosensors.
    Collin O; Na S; Chowdhury F; Hong M; Shin ME; Wang F; Wang N
    Curr Biol; 2008 Sep; 18(17):1288-94. PubMed ID: 18760605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Super-Resolution Correlative Light and Electron Microscopy (SR-CLEM) Reveals Novel Ultrastructural Insights Into Dendritic Cell Podosomes.
    Joosten B; Willemse M; Fransen J; Cambi A; van den Dries K
    Front Immunol; 2018; 9():1908. PubMed ID: 30186284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dendritic cell podosomes are protrusive and invade the extracellular matrix using metalloproteinase MMP-14.
    Gawden-Bone C; Zhou Z; King E; Prescott A; Watts C; Lucocq J
    J Cell Sci; 2010 May; 123(Pt 9):1427-37. PubMed ID: 20356925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lymphocyte-specific protein 1 regulates mechanosensory oscillation of podosomes and actin isoform-based actomyosin symmetry breaking.
    Cervero P; Wiesner C; Bouissou A; Poincloux R; Linder S
    Nat Commun; 2018 Feb; 9(1):515. PubMed ID: 29410425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal organization and mechanosensory function of podosomes.
    van den Dries K; Bolomini-Vittori M; Cambi A
    Cell Adh Migr; 2014; 8(3):268-72. PubMed ID: 24658050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modular actin nano-architecture enables podosome protrusion and mechanosensing.
    van den Dries K; Nahidiazar L; Slotman JA; Meddens MBM; Pandzic E; Joosten B; Ansems M; Schouwstra J; Meijer A; Steen R; Wijers M; Fransen J; Houtsmuller AB; Wiseman PW; Jalink K; Cambi A
    Nat Commun; 2019 Nov; 10(1):5171. PubMed ID: 31729386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.