BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 2538579)

  • 1. Development of saxitoxin-sensitive and insensitive sodium channels in cultured neonatal rat astrocytes.
    Yarowsky PJ; Krueger BK
    J Neurosci; 1989 Mar; 9(3):1055-61. PubMed ID: 2538579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage-dependent sodium channels in synaptoneurosomes: studies with 22Na+ influx and [3H]saxitoxin and [3H]batrachotoxinin-A 20-alpha-benzoate binding. Effects of proparacaine isothiocyanate.
    Gusovsky F; Nishizawa Y; Padgett W; McNeal ET; Rice K; Kim CH; Creveling CR; Daly JW
    Brain Res; 1990 Jun; 518(1-2):101-6. PubMed ID: 1697206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3H-batrachotoxinin-A benzoate binding to voltage-sensitive sodium channels: inhibition by the channel blockers tetrodotoxin and saxitoxin.
    Brown GB
    J Neurosci; 1986 Jul; 6(7):2064-70. PubMed ID: 2426426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential expression of sodium channel activities during the development of chick skeletal muscle cells in culture.
    Strichartz G; Bar-Sagi D; Prives J
    J Gen Physiol; 1983 Sep; 82(3):365-84. PubMed ID: 6313850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Divalent cation competition with [3H]saxitoxin binding to tetrodotoxin-resistant and -sensitive sodium channels. A two-site structural model of ion/toxin interaction.
    Doyle DD; Guo Y; Lustig SL; Satin J; Rogart RB; Fozzard HA
    J Gen Physiol; 1993 Feb; 101(2):153-82. PubMed ID: 8384241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional properties of rat and human neocortical voltage-sensitive sodium currents.
    Cummins TR; Xia Y; Haddad GG
    J Neurophysiol; 1994 Mar; 71(3):1052-64. PubMed ID: 8201401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [3H]-lifarizine, a high affinity probe for inactivated sodium channels.
    MacKinnon AC; Wyatt KM; McGivern JG; Sheridan RD; Brown CM
    Br J Pharmacol; 1995 Jul; 115(6):1103-9. PubMed ID: 7582509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Up-regulation of functional voltage-dependent sodium channels by insulin in cultured bovine adrenal chromaffin cells.
    Yamamoto R; Yanagita T; Kobayashi H; Yuhi T; Yokoo H; Wada A
    J Neurochem; 1996 Oct; 67(4):1401-8. PubMed ID: 8858921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of sodium channels with different saxitoxin affinity during rat forebrain development.
    Villegas R; Castillo C; Póo ME; Schnell S; Piernavieja C; Balbi D; Villegas GM
    Brain Res Dev Brain Res; 1994 Aug; 81(1):26-40. PubMed ID: 7805284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of [3H]saxitoxin to the voltage-dependent Na channels and inhibition of 22Na influx in bovine adrenal medullary cells.
    Wada A; Arita M; Kobayashi H; Izumi F
    Neuroscience; 1987 Oct; 23(1):327-31. PubMed ID: 2446205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional reconstitution of the purified sodium channel protein from rat sarcolemma.
    Weigele JB; Barchi RL
    Proc Natl Acad Sci U S A; 1982 Jun; 79(11):3651-5. PubMed ID: 6285356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of [3H]batrachotoxinin A-20-alpha-benzoate and [3H]saxitoxin to receptor sites associated with sodium channels in trout brain synaptoneurosomes.
    Rubin JG; Soderlund DM
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1993 Jun; 105(2):231-8. PubMed ID: 8103729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein kinase C-mediated down-regulation of voltage-dependent sodium channels in adrenal chromaffin cells.
    Yanagita T; Wada A; Yamamoto R; Kobayashi H; Yuhi T; Urabe M; Niina H
    J Neurochem; 1996 Mar; 66(3):1249-53. PubMed ID: 8769891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural regulation of [3H]saxitoxin binding site numbers in rat neonatal muscle.
    Bambrick LL; Gordon T
    J Physiol; 1988 Dec; 407():263-74. PubMed ID: 2855740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic basis for insensitivity to tetrodotoxin and saxitoxin in sodium channels of canine heart and denervated rat skeletal muscle.
    Guo XT; Uehara A; Ravindran A; Bryant SH; Hall S; Moczydlowski E
    Biochemistry; 1987 Dec; 26(24):7546-56. PubMed ID: 2447944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Down-regulation of voltage-dependent sodium channels initiated by sodium influx in developing neurons.
    Dargent B; Couraud F
    Proc Natl Acad Sci U S A; 1990 Aug; 87(15):5907-11. PubMed ID: 2165609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Saxitoxin blocks batrachotoxin-modified sodium channels in the node of Ranvier in a voltage-dependent manner.
    Rando TA; Strichartz GR
    Biophys J; 1986 Mar; 49(3):785-94. PubMed ID: 2421797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and properties of voltage-sensitive sodium channels in smooth muscle cells from pregnant rat myometrium.
    Martin C; Arnaudeau S; Jmari K; Rakotoarisoa L; Sayet I; Dacquet C; Mironneau C; Mironneau J
    Mol Pharmacol; 1990 Nov; 38(5):667-73. PubMed ID: 2172774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competitive binding interaction between Zn2+ and saxitoxin in cardiac Na+ channels. Evidence for a sulfhydryl group in the Zn2+/saxitoxin binding site.
    Schild L; Moczydlowski E
    Biophys J; 1991 Mar; 59(3):523-37. PubMed ID: 1646656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Batrachotoxin-modified sodium channels in planar lipid bilayers. Characterization of saxitoxin- and tetrodotoxin-induced channel closures.
    Green WN; Weiss LB; Andersen OS
    J Gen Physiol; 1987 Jun; 89(6):873-903. PubMed ID: 2440978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.