These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 25386566)
1. Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Zhai G; Walters KS; Peate DW; Alvarez PJ; Schnoor JL Environ Sci Technol Lett; 2014 Feb; 1(2):146-151. PubMed ID: 25386566 [TBL] [Abstract][Full Text] [Related]
2. Interactions of gold nanoparticles with freshwater aquatic macrophytes are size and species dependent. Glenn JB; White SA; Klaine SJ Environ Toxicol Chem; 2012 Jan; 31(1):194-201. PubMed ID: 22038861 [TBL] [Abstract][Full Text] [Related]
3. Nanoparticle Size and Coating Chemistry Control Foliar Uptake Pathways, Translocation, and Leaf-to-Rhizosphere Transport in Wheat. Avellan A; Yun J; Zhang Y; Spielman-Sun E; Unrine JM; Thieme J; Li J; Lombi E; Bland G; Lowry GV ACS Nano; 2019 May; 13(5):5291-5305. PubMed ID: 31074967 [TBL] [Abstract][Full Text] [Related]
4. Uptake, translocation, and transformation of quantum dots with cationic versus anionic coatings by Populus deltoides × nigra cuttings. Wang J; Yang Y; Zhu H; Braam J; Schnoor JL; Alvarez PJ Environ Sci Technol; 2014 Jun; 48(12):6754-62. PubMed ID: 24870363 [TBL] [Abstract][Full Text] [Related]
5. Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Zhu ZJ; Wang H; Yan B; Zheng H; Jiang Y; Miranda OR; Rotello VM; Xing B; Vachet RW Environ Sci Technol; 2012 Nov; 46(22):12391-8. PubMed ID: 23102049 [TBL] [Abstract][Full Text] [Related]
6. Nonselective uptake of silver and gold nanoparticles by wheat. Zhang WY; Wang Q; Li M; Dang F; Zhou DM Nanotoxicology; 2019 Oct; 13(8):1073-1086. PubMed ID: 31271319 [TBL] [Abstract][Full Text] [Related]
7. Biodistribution of single and aggregated gold nanoparticles exposed to the human lung epithelial tissue barrier at the air-liquid interface. Durantie E; Vanhecke D; Rodriguez-Lorenzo L; Delhaes F; Balog S; Septiadi D; Bourquin J; Petri-Fink A; Rothen-Rutishauser B Part Fibre Toxicol; 2017 Nov; 14(1):49. PubMed ID: 29187209 [TBL] [Abstract][Full Text] [Related]
8. Clathrin-mediated endocytosis of gold nanoparticles in vitro. Ng CT; Tang FM; Li JJ; Ong C; Yung LL; Bay BH Anat Rec (Hoboken); 2015 Feb; 298(2):418-27. PubMed ID: 25243822 [TBL] [Abstract][Full Text] [Related]
9. Investigation of gold nanoparticles uptake and their tissue level distribution in rice plants by laser ablation-inductively coupled-mass spectrometry. Koelmel J; Leland T; Wang H; Amarasiriwardena D; Xing B Environ Pollut; 2013 Mar; 174():222-8. PubMed ID: 23277326 [TBL] [Abstract][Full Text] [Related]
10. Separation, Sizing, and Quantitation of Engineered Nanoparticles in an Organism Model Using Inductively Coupled Plasma Mass Spectrometry and Image Analysis. Johnson ME; Hanna SK; Montoro Bustos AR; Sims CM; Elliott LC; Lingayat A; Johnston AC; Nikoobakht B; Elliott JT; Holbrook RD; Scott KC; Murphy KE; Petersen EJ; Yu LL; Nelson BC ACS Nano; 2017 Jan; 11(1):526-540. PubMed ID: 27983787 [TBL] [Abstract][Full Text] [Related]
11. Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Sabo-Attwood T; Unrine JM; Stone JW; Murphy CJ; Ghoshroy S; Blom D; Bertsch PM; Newman LA Nanotoxicology; 2012 Jun; 6(4):353-60. PubMed ID: 21574812 [TBL] [Abstract][Full Text] [Related]
12. Antibacterial Activity and Cytotoxicity of Gold (I) and (III) Ions and Gold Nanoparticles. Shareena Dasari TP; Zhang Y; Yu H Biochem Pharmacol (Los Angel); 2015 Dec; 4(6):. PubMed ID: 27019770 [TBL] [Abstract][Full Text] [Related]
13. Potential of Chilopsis linearis for gold phytomining: using XAS to determine gold reduction and nanoparticle formation within plant tissues. Rodriguez E; Parsons JG; Peralta-Videa JR; Cruz-Jimenez G; Romero-Gonzalez J; Sanchez-Salcido BE; Saupe GB; Duarte-Gardea M; Gardea-Torresdey JL Int J Phytoremediation; 2007; 9(2):133-47. PubMed ID: 18246721 [TBL] [Abstract][Full Text] [Related]
14. Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag⁺ at sublethal concentrations. Wang J; Koo Y; Alexander A; Yang Y; Westerhof S; Zhang Q; Schnoor JL; Colvin VL; Braam J; Alvarez PJ Environ Sci Technol; 2013 May; 47(10):5442-9. PubMed ID: 23631766 [TBL] [Abstract][Full Text] [Related]
15. Rapid green synthesis of silver and gold nanoparticles using Dendropanax morbifera leaf extract and their anticancer activities. Wang C; Mathiyalagan R; Kim YJ; Castro-Aceituno V; Singh P; Ahn S; Wang D; Yang DC Int J Nanomedicine; 2016; 11():3691-701. PubMed ID: 27570451 [TBL] [Abstract][Full Text] [Related]
16. Thermal and photoinduced reduction of ionic Au(III) to elemental Au nanoparticles by dissolved organic matter in water: possible source of naturally occurring Au nanoparticles. Yin Y; Yu S; Liu J; Jiang G Environ Sci Technol; 2014; 48(5):2671-9. PubMed ID: 24471802 [TBL] [Abstract][Full Text] [Related]
17. Xylem and Phloem Based Transport of CeO Ma Y; He X; Zhang P; Zhang Z; Ding Y; Zhang J; Wang G; Xie C; Luo W; Zhang J; Zheng L; Chai Z; Yang K Environ Sci Technol; 2017 May; 51(9):5215-5221. PubMed ID: 28383248 [TBL] [Abstract][Full Text] [Related]
18. Biosynthesis of gold nanoparticles by the extreme bacterium Li J; Li Q; Ma X; Tian B; Li T; Yu J; Dai S; Weng Y; Hua Y Int J Nanomedicine; 2016; 11():5931-5944. PubMed ID: 27877039 [No Abstract] [Full Text] [Related]
19. Biological synergy of greener gold nanoparticles by using Coleus aromaticus leaf extract. Boomi P; Ganesan RM; Poorani G; Gurumallesh Prabu H; Ravikumar S; Jeyakanthan J Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():202-210. PubMed ID: 30889692 [TBL] [Abstract][Full Text] [Related]
20. Enzyme digestion combined with SP-ICP-MS analysis to characterize the bioaccumulation of gold nanoparticles by mustard and lettuce plants. Wei WJ; Li L; Gao YP; Wang Q; Zhou YY; Liu X; Yang Y Sci Total Environ; 2021 Jul; 777():146038. PubMed ID: 33677305 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]