BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 25386647)

  • 1. Thermodynamic system drift in protein evolution.
    Hart KM; Harms MJ; Schmidt BH; Elya C; Thornton JW; Marqusee S
    PLoS Biol; 2014 Nov; 12(11):e1001994. PubMed ID: 25386647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple time scale backbone dynamics of homologous thermophilic and mesophilic ribonuclease HI enzymes.
    Butterwick JA; Loria JP; Astrof NS; Kroenke CD; Cole R; Rance M; Palmer AG
    J Mol Biol; 2004 Jun; 339(4):855-71. PubMed ID: 15165855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smooth change, mechanistic fluctuation: thermodynamic system drift in protein evolution.
    Robinson R
    PLoS Biol; 2014 Nov; 12(11):e1001992. PubMed ID: 25387125
    [No Abstract]   [Full Text] [Related]  

  • 4. An inserted Gly residue fine tunes dynamics between mesophilic and thermophilic ribonucleases H.
    Butterwick JA; Palmer AG
    Protein Sci; 2006 Dec; 15(12):2697-707. PubMed ID: 17088323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of residual structure in the unfolded state of a thermophilic protein.
    Robic S; Guzman-Casado M; Sanchez-Ruiz JM; Marqusee S
    Proc Natl Acad Sci U S A; 2003 Sep; 100(20):11345-9. PubMed ID: 14504401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autonomously folding protein fragments reveal differences in the energy landscapes of homologous RNases H.
    Rosen LE; Marqusee S
    PLoS One; 2015; 10(3):e0119640. PubMed ID: 25803034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The burst-phase folding intermediate of ribonuclease H changes conformation over evolutionary history.
    Lim SA; Marqusee S
    Biopolymers; 2018 Aug; 109(8):e23086. PubMed ID: 29152711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary trend toward kinetic stability in the folding trajectory of RNases H.
    Lim SA; Hart KM; Harms MJ; Marqusee S
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):13045-13050. PubMed ID: 27799545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HU histone-like DNA-binding protein from Thermus thermophilus: structural and evolutionary analyses.
    Papageorgiou AC; Adam PS; Stavros P; Nounesis G; Meijers R; Petratos K; Vorgias CE
    Extremophiles; 2016 Sep; 20(5):695-709. PubMed ID: 27342116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A thermodynamic comparison of mesophilic and thermophilic ribonucleases H.
    Hollien J; Marqusee S
    Biochemistry; 1999 Mar; 38(12):3831-6. PubMed ID: 10090773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermostability of Enzymes from Molecular Dynamics Simulations.
    Zeiske T; Stafford KA; Palmer AG
    J Chem Theory Comput; 2016 Jun; 12(6):2489-92. PubMed ID: 27123810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the Potential Origins of the High Stability of Reconstructed Ancestral Proteins.
    Trudeau DL; Kaltenbach M; Tawfik DS
    Mol Biol Evol; 2016 Oct; 33(10):2633-41. PubMed ID: 27413048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure, stability, and folding of ribonuclease H1 from the moderately thermophilic Chlorobium tepidum: comparison with thermophilic and mesophilic homologues.
    Ratcliff K; Corn J; Marqusee S
    Biochemistry; 2009 Jun; 48(25):5890-8. PubMed ID: 19408959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High thermal stability of 3-isopropylmalate dehydrogenase from Thermus thermophilus resulting from low DeltaC(p) of unfolding.
    Motono C; Oshima T; Yamagishi A
    Protein Eng; 2001 Dec; 14(12):961-6. PubMed ID: 11809926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetic evidence for formation of a pH-dependent hydrophobic cluster in the denatured state of Thermus thermophilus ribonuclease H.
    Guzman-Casado M; Parody-Morreale A; Robic S; Marqusee S; Sanchez-Ruiz JM
    J Mol Biol; 2003 Jun; 329(4):731-43. PubMed ID: 12787674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contributions of folding cores to the thermostabilities of two ribonucleases H.
    Robic S; Berger JM; Marqusee S
    Protein Sci; 2002 Feb; 11(2):381-9. PubMed ID: 11790848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extreme temperature tolerance of a hyperthermophilic protein coupled to residual structure in the unfolded state.
    Wallgren M; Adén J; Pylypenko O; Mikaelsson T; Johansson LB; Rak A; Wolf-Watz M
    J Mol Biol; 2008 Jun; 379(4):845-58. PubMed ID: 18471828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extremely thermophilic translation system in the common ancestor commonote: ancestral mutants of Glycyl-tRNA synthetase from the extreme thermophile Thermus thermophilus.
    Shimizu H; Yokobori S; Ohkuri T; Yokogawa T; Nishikawa K; Yamagishi A
    J Mol Biol; 2007 Jun; 369(4):1060-9. PubMed ID: 17477933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the folding processes of T. thermophilus and E. coli ribonucleases H.
    Hollien J; Marqusee S
    J Mol Biol; 2002 Feb; 316(2):327-40. PubMed ID: 11851342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Urea-induced unfolding and conformational stability of 3-isopropylmalate dehydrogenase from the Thermophile thermus thermophilus and its mesophilic counterpart from Escherichia coli.
    Motono C; Yamagishi A; Oshima T
    Biochemistry; 1999 Jan; 38(4):1332-7. PubMed ID: 9930995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.